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Abstract— A network model is introduced that al-
lows the extraction of the topological structure of a set
of input vectors corresponding to a vascular tree in a 3D
Doppler or contrast enhanced ultrasound. This extraction
is a precondition for many medical image registration al-
gorithms. The method is based on the Growing Neural Gas
algorithm (GNG) by Fritzke [1]. The GNG network model
is extended by introducing a sphere of influence for each
vertex to represent the width of the vessel. Results on arti-
ficial and real ultrasound image data sets are discussed.

1 Introduction
One objective of our research team is to develop an inter-
vention assistant1 for navigation supporting the local tu-
mor therapy in liver tumors. A near real time registration
between a pre-interventional tomographic image and an in-
terventional 3D ultrasound (US) image data set is crucial
for this purpose.

Registration in this field means transforming the coordi-
nate space of one image into the coordinate space of the
other image [2]. After this transformation both images can
be aligned or even merged. This way information in one
image modality can be joined with the information avail-
able in the other. In the given application this means, that
the registration procedure has to merge the data sets accu-
rately enough that the physician can intuitively map radio-
logical information onto pertinent regions in the US.

According to Aylward et al. [3] there are three basic
forms of image registration:

• image-image registration
• image-model registration
• model-model registration

The choice of the procedure depends on features of the im-
age data, e.g. the visibility of anatomical structures.

The current clinical procedure is based on an interactive
landmark based registration of external bony landmarks.
This method is error prone and slow if many adjustments
have to be made. The objective was to develop a registra-
tion method that is more stable, more accurate and faster.

1the LOCALITE SonoNavigator

The following considerations influenced the design of
the new registration process:

• Image-image registration is rather slow, because much
basic image information, in the majority of cases
color- or gray values, is used for the algorithm. This
approach is used for images with similar image fea-
tures, such as similar gray values in same image
modalities. It is not suitable for images of low qual-
ity (noisy and with artifacts), because convergency is
slow and the probability to hang in a local minimum
is high.

• Image-model and model-model registration both use
reduced image information. These approaches are
faster if this reduced information is already available.
These registration methods yield unacceptable results
if information loss is produced by an inadequate re-
duction.

To apply the image-model or model-model principle ap-
proach, a stable and geometrical valid model of one (or
both) of the image data sets has to be produced in a first
step. Therefore only structures can be exploited, that can be
seen in both image data sets and that are stable with respect
to deformation. In our case, the blood vessels are a struc-
ture that is in this sense useful for registration of soft tissue
images. The topological structure defined by the branching
points as well as the radius of the vessels are the two fea-
tures that are not influenced by soft tissue shifts. They are
therefore pivotal features. Other features such as length or
direction are affected by tissue shifts.

The vascular tree models have to be derived from two
different image modalities:

(1) tomographic image data sets (MRI, CT)

(2) 3D Doppler or contrast enhanced ultrasonic image
data sets

The blood vessels are extracted from the tomographic data
using a segmentation-based method [4]. We developed an
extraction method for 3D Doppler or contrast enhanced ul-
trasound image data sets. A model of the blood vessel sys-
tem is extracted through self organization.



2 Methods
In the following section, related work from the field of ex-
tracting models from images is shortly discussed and the
developed algorithm will be related.

The method has to realize an extraction of a model for
the blood vessel system of a region of interest within the
patient’s liver from a 3D ultrasound image data set. The
result has to be a graph with edges that have the additional
attribute ”radius” corresponding to the radius of the mod-
eled vessel.

2.1 Related work

Usually the extraction of vessel trees is achieved by
segmentation-based methods (Region Growing [5]; com-
bination of ”traversal, iterative refinement, and voxel label-
ing” [6]). These algorithms strongly depend on the image
quality. Such methods are successfully applied [6] to com-
puter tomographic data that is much less noisy than ultra-
sound. If those methods are used for US images (e.g. [5]),
manual corrections have to be introduced after the auto-
matic processing. The segmentation-based methods suffer
from exclusively using color- or gray value information.

Learning based methods can additionally consider struc-
tural information. They are successfully used for fast and
robust extractions of models ([7, 8]). That makes them
suitable for the given application. An algorithm for learn-
ing was sought that allows a fast and robust estimation of
the topology of a given structure. To realize this so called
”Topology Learning” [1], there are methods available for a
wide range of applications. For an overview on topology
representing networks see [9].

A basic approach for ”Topology Learning” is the Neu-
ral Gas by Martinetz and Schulten [10]. It extracts a graph
structure with nodes and edges from feature spaces with
arbitrary dimensions. In the given application the feature
space is the 3D image data. The method has one ma-
jor drawback for our application: the number of adaption
steps has to be specified in advance. In our application the
number of adaption steps needed for a good performance
strongly depends on the size of the structure that is to be
extracted. This size is not known in advance.

To overcome the problem of a fixed number of adaption
steps Fritzke introduced a modification of the NG – the
Growing Neural Gas [1]. Adaption now stops if a speci-
fied performance criterion is met. The Growing Neural Gas
algorithm (GNG) is particularly suited ”to learn the impor-
tant topological relations in a given set of input vectors by
means of a simple Hebb-like learning rule” [1]. Again the
result is a graph structure with nodes and edges. But this
structure does not entail information on the diameter of the
structure.

An extension of the GNG, the Active Balloon Model [7],
was introduced to calculate a complete three-dimensional
model of a given structure including information about ra-

dius. At first a skeleton is calculated from a set of points
at the surface of the structure by a modified GNG. After
that, a representation of the shape is extracted via Active
Balloons. There are two problems with this method in our
application:

(1) The result is a model of the object as a polygonal rep-
resentation composed of surface points. Because we
need a model consisting of nodes and edges with a ra-
dius, additional calculations would have to be made.

(2) The extraction of the skeleton and the real volume
shape extraction (including radius) are separated. The
runtime behavior of this method is not suitable for
real-time applications.

For the given application a combined extraction of skele-
ton and shape including radius is required. Therefore an
algorithm based on GNG was developed, that builds up
both types of information during the learning process. The
Growing Neural Gas algorithm by Fritzke was adapted and
expanded for the extraction of vascular models. The de-
veloped Vessel Extracting Gas (VEG) algorithm will be
explained in detail in chapter 2.3.

2.2 Limitations using GNG in the given ap-
plication

The neural network shall extract the following vessel fea-
tures:

• topological structure defined by the branching points
• diameter

In a first attempt the original GNG was applied to the
given data as follows:

• training vectors: positions of those voxels in the 3D
ultrasound image data set that according to their gray
value are likely to belong to the vessels, so called
”vessel voxels”

• initialization: two vertices placed at a random place
in the 3D ultrasound image data space with a joining
edge

For the original GNG algorithm by Fritzke [1], the fol-
lowing problems became apparent during the learning pro-
cess:

(1) Overrepresentation of large vessels
(2) Difficult diameter estimation
(3) Connection of unconnected vessel parts

Figure 1(a) shows the surface of a vessel voxel set which
is to be modeled using the GNG. The result is given in
figure 1(b), it illustrates the problems (1) and (2).

In the following the reasons will be explained in detail.
In chapter 2.3 modifications of the algorithm to tackle the
problems are introduced.
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(a) Vessel voxel set taken from the ultrasound, yellow: Surface of
the vessel voxel set taken from an artificial 3D ultrasound volume.

(b) GNG after learning process on the vessel voxels shown in fig-
ure 1(a), green: GNG structure with overrepresentation of larger
vessels whereas smaller vessels are nearly not represented.

Figure 1: Problems using GNG

2.2.1 Problem 1 – Overrepresentation of large vessels

Vessels with a large diameter are overrepresented with ver-
tices, whereas smaller vessel are completely unrepresented.
The reason for the unequal representation is the error accu-
mulation. Larger vessels contain more vessel voxels. That
means it is more likely that a vessel voxel of a large vessel
is presented to the net than a vessel voxel of a small ves-
sel. Thus vertices representing areas of large vessels are
hit more often than those representing smaller areas. That
is the reason why a larger error value is accumulated in
the area of larger vessels and many new vertices are added
there. In the area of small vessel the accumulated error
value is small in comparison, because training vectors of
those areas are seldom presented. So nearly no vertices are
added here.

This problem is known as the ”magnification property”
of the Neural Gas [11]. One simple approach to overcome
this problem is the ”conscience” introduced by deSieno

[12]. Here every vertex has a bias based on the number
of times it was the winning vertex. This bias term is in-
corporated into the competition. A vertex ”that wins too
often begins to ’feel guilty’ and prevents itself from win-
ning excessively”[12].

Another possibility to cope with the problem was devel-
oped by Der and Herrmann [11]. Here the learning rate for
the winning vertex is adapted taking the local density of the
input vector room near this winning vertex into account.
Both approaches lead to a positioning of the vertices that
is equally distributed in the input vector room. This way
they are able to solve the first problem but the second one,
diameter estimation, is still open.

2.2.2 Problem 2 – Difficult diameter estimation

To develop a model of the vessels that is useful for registra-
tion, an estimation of the diameter of the vessels is needed.
It is possible to estimate the diameter from the result graph
calculated by the GNG. A vast number of vertices would
have to be inserted to get a representation of the small ves-
sels. Some kind of center line recognition and radius es-
timation would be needed. This conceivable estimation is
complex and in conflict with the real time requirements.

2.2.3 Problem 3 – Connection of unconnected vessel
parts

A further problem that became evident during the tests are
inappropriate connections of vertices of the GNG without
correspondence in the real data. The edges of the GNG
do not reliably identify vessels. The main reason is that
besides ”nearness” there is no other structural feature ex-
ploited such as continuity. Therefore, different but close
vessels are often merged.

2.3 Vessel Extracting Gas – VEG

The Vessel Extracting Gas procedure is initiated like the
GNG by placing two vertices at a random place in the input
space that get a joining edge. As training vectors the vessel
voxels are presented to the net.

2.3.1 Modifications to solve the problems overrepre-
sentation and missing diameter estimation

A combined solution for both problems is introduced to the
network through the addition of a further attribute that is
assigned to the vertices in the VEG. We call it ”sphere of
influence” r in R.

If a model of the vascular tree extracted from the tomo-
graphic images is given, the sphere of influence is initial-
ized with the average radius of the vessels in this model.
As a new process step the width of the sphere of influence
of every single vertex is adapted during every learning it-
eration. According to the ”Winner-takes-all” principle (see
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e.g. [13]) this adaption is applied to the vertex that is near-
est to the input vector, called ”Winner”.

• If the presented input vector lies inside the sphere of
influence of the Winner vertice, its sphere of influence
is decreased.

• If it lies outside, i.e. its distance to the vertices posi-
tion is larger than the radius of the sphere of influence,
the sphere will be increased.

The adaption rules for the sphere of influence are shown in
table 1.

Condition Adaption rule
|d| > 2r ∆r = εw · 2 · ymax

2r ≥ |d| > r ∆r = εw(ymax sin(Π d
r

+ Π
2
) + ymax)

r ≥ |d| ∆r = εw(ymin sin(Π d
r

+ 3·Π
2

) − ymin)

Table 1: Adaption rules for the sphere of influence of the
VEG for distance d

After the learning process, the sphere of influence en-
closes those points in the ultrasound volume, that lie near
the vertex and that are vessel voxels according to their gray
value. That gives a useful estimation for the radius of the
vessel. This is a solution for the problem of diameter esti-
mation that is in accordance with reality and easy to calcu-
late.

According to Fritzke [1], a new vertex is added near
the vertex with the highest error value. So to overcome
the problem Overrepresentation of large vessels the sphere
of influence is integrated into the error accumulation by
means of a case differentiation as follows:

• If the input vector lies inside the sphere of influence,
nothing is added to the local error counting variable.

• If the vector lies outside the sphere of influence, the
squared distance is added as suggested by Fritzke [1].

For a vertex representing an area of a large vessel, the
sphere of influence will grow according to the adaption
rule in Table 1. Thus many presented vessel voxels will
lie inside the sphere. For those vessel voxels an adaption is
made, but nothing is added to the local error counting vari-
able. Thus new vertices are not created in this area. This
mechanism can prevent large vessels from being overrep-
resented.

2.3.2 Modification to solve the problem of inappropri-
ate connections

To address the problem of Connection of unconnected
vessel parts, an assessment for edges was integrated into
the learning process. It is based on the mean gray value
of the edge. This value is calculated by averaging the
gray value along the line between the two endpoints. If
it lies beyond the adjusted threshold for the vessels, the

construction of the edge is rejected.

During the learning process the topological structure is
adapted as in the GNG via the age system of the edges [1].
Every edge d has a counter aged that is increased if one
of the adjacent vertices is the Winner vertice. If a certain
edge is ”older” than the maximum age for edges amax it is
removed. Thus changes in the topology of the network by
adaptation of the adjacent vertices are taken into account.
As a stopping criterion, a final network size that has to be
set in advance was used. In chapter 2.4 the influence of the
final network size is discussed.

The result of the introduced method is a graph structure,
with the additional attribute ”sphere of influence” for the
vertices. From this extended structure, the vascular tree
model can be calculated by giving each edge a radius that is
the mean width of the sphere of influence of its endpoints.

2.3.3 Elements of the VEG

The elements of the VEG are presented in accordance to
the pertinent description of the GNG algorithm. Differ-
ences to the original network configuration by Fritzke [1]
are marked in bold-faced type.

The network for the Vessel Extracting Gas:

• a set of vertices A, with c ∈ A has:

– an n-dimensional reference vector wc ∈ Rn, that
can be seen as position in input space

– a local counting variable error(c) ∈ R, to accu-
mulate the error value

– the sphere of influence rc ∈ R

• a set of edges N , with d ∈ N has:

– a pair of vertices {c1, c2} : c1, c2 ∈ A

– an integer age aged ∈ Z

• a set I of n-dimensional input signals (training vec-
tors) from the ultrasound volume’s space, with ξ ∈
I representing a probability density function P (ξ)

2.3.4 Process steps of the VEG

Here in addition to the structural elements the actual proce-
dure is described. The complete VEG algorithm is shown
below. The differences to the original GNG algorithm by
Fritzke [1] are marked in bold-faced type.

Vessel Extracting Gas algorithm:

(1) Initialize the network with two vertices a and b at random
positions wa and wb in Rn, spheres of influence ra and rb

respectively and an edge v between a and b.

(2) Present a randomly chosen point ξ from the set I of ves-
sel voxels.

(3) Find the nearest vertex s1 as well as the second nearest ver-
tex s2.

(4) Increment the age of all edges adjacent to s1.
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(5) If ξ lies outside the sphere of influence of s1, i.e. |ws1 −
ξ| > rs1 , add the squared distance in the input space be-
tween the input signal and the nearest vertex to the local
error value:
∆error(s1) = |ws1 − ξ|2

(6) Move s1 and its topological neighbors (in the graph) to-
wards ξ by fractions εb and εn, respectively, of the total
distance:
∆ws1 = εb(ξ − ws1)

∆wn = εn(ξ − wn) for all direct topological neighbors n
of s1

(7) Adapt the sphere of influence of vertex s1 according to
the rules given in table 1.

(8) If s1 and s2 are connected via an edge, set the age of this
edge to zero. If such an edge does not exist, create it as far
as its mean gray value exceeds the threshold for vessels.

(9) Remove edges with an age larger than amax. If this results
in results in points having no emanating edges, remove them
as well.

(10) If the number of input signals presented so far is an integer
multiple of the parameter λ, insert a new vertex as follows:

• Determine the vertex q with the maximum accumu-
lated error.

• Insert a new vertex t half way between q and its neigh-
bor f with the largest error variable:
wt = 0.5 · (wq + wf ).

• Insert new edges between t and q and t and f , as far
as their mean gray value exceeds the threshold for
vessels, remove the original edge between q and f .

• Decrease the error variables of q and f by multiplying
with the constant α. Initialize error(t) with the new
value for the error variable of q.

• Initialize the sphere of influence of the new vertice:
rt = 0.5 · (rq + rf )

(11) Decrease all error variables by multiplying them with the
constant d.

(12) If the number of vertices is smaller than nf , go back to step
2.

2.4 Determining an appropriate parameter
set

As in any other learning method, the choice of the param-
eters is crucial for the performance of the method. Thus
the determination of an appropriate parameter set is very
important.

To optimize the parameter set, a test environment was
built that permits qualitative evaluations of the results. It
shows image volumes and vascular tree models respec-
tively from the tomographic data as well as from the ul-
trasound data. The image volumes are displayed as de-
rived surface models with an adjustable threshold (see fig-
ure 2(a)). The extracted vascular tree models are displayed
as combinations of spheres and cylinders (see figure 2(b)).

It is possible to qualitatively evaluate the topological ad-
equacy of the extraction by simultaneously displaying the
surface model and the extracted vessel model or by switch-
ing between both of them.

The parameter optimization tests were first run on artifi-
cial ultrasound image data sets. To create these test data, a
set of vessel tree models was taken, that was extracted from
an MRI of a proband study by MeVis GmbH. The models
are given as sets of vertices and edges with extracted diam-
eters.

From these models artificial 3D Doppler ultrasound vol-
umes were created as follows: The model was transformed
to fit into a volume data set of a fixed size. Then gray val-
ues corresponding to typical Doppler ultrasound gray val-
ues were introduced into the artificial volume data set at
the positions specified by the transformed model. The ar-
tificial data did not include the following characteristics of
normal 3D Doppler or contrast enhanced ultrasound (see
e.g. [14]):

• noise
• speckle
• artifacts

To initialize the Vessel Extracting Gas algorithm the fol-
lowing parameters have to be introduced:

• threshold for vessels θ
• maximum age for edges amax

• learning rate for the reference vector of the Winner
vertex εb

• learning rate for the reference vector of topological
neighbors εn

• learning rate for sphere of influence of the Winner ver-
tex εw

• error decrease factor for adapted vertices α
• error decrease factor for all vertices d
• number of iterations until a new vertex is inserted λ
• final net size nf

The threshold for the vessels determines the set of vessel
voxels.

To identify a good set of parameters the procedure was
first started with the values used by Fritzke in the GNG [1]:

• maximum age for edges amax = 50,
• learning rate for winner reference vector εb = 0.2,
• learning rate for neighbor reference vector εn =

0.006,
• error decrease factor for adapted vertices α = 0.5,
• error decrease factor for all vertices d = 0.995,
• number of iterations until new vertex λ = 100.

To choose the learning rate for the sphere of influence, the
value of the learning rate of the reference vector for the
Winner vertex was used in a first attempt. To avoid ex-
tensive calculation times a final net size of nf = 10 was
chosen.

The following parameters had to be adjusted: amax, εw,
λ, nf . The influence of the parameters on the performance
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of the VEG is summarized in table 2. The parameters α
and d are not included in this table because their variation
did not lead to a significant change in the results.

The following set of parameters yielded good results on
artificial ultrasound image data sets checked in the test
environment described above: amax = 125, εb = 0.2,
εn = 0.006, εw = 0.1, α = 0.5, d = 0.995, λ = 2500,
nf = 20.

parameter too small too large recommended
value

θ – threshold
for vessels

prone to
noise, vertices
outside the
vessels

few vessel
voxels, con-
centration on
large vessels

amax – max-
imum age for
edges

loose structure edges outside
the vessels

125.000

εb – learning
rate for win-
ner’s reference
vector

small move-
ments, slow
convergency

large move-
ments, slow
convergency

0.200

εn – learning
rate for neigh-
bor’s reference
vector

neighborhood
less impact,
less structure

slow conver-
gency, because
of being
pulled to and
fro between
neighbors

0.006

εw – learning
rate for win-
ner’s sphere of
influence

adaption too
small, error
accumulation
and problems
similar to
GNG

too large
spheres of
influence

0.100

λ – number of
iteration until
new vertex

error accu-
mulation not
represen-
tative, bad
positioning of
vertices

very long run-
ning time

2500.000

nf – final net
size

underrepresen-
tation of small
vessels

overrepresen-
tation of large
vessels, long
running time

20.000

Table 2: Results of parameter tests for the Vessel Extracting
Gas approach in test environment

2.5 Results of the VEG
There are two criteria for the evaluation of the extraction
method:

• The appropriate modeling of the vascular tree: This
can only qualitatively be judged because there is no
measure of a good extraction. Bad extractions can
be characterized by over- or underrepresentation of

vessel parts, by vertices or edges outside the vessels
or widths of the calculated edges that do not model
the real radius of the vessel (see e.g. figure 1(b)).
Good extractions are characterized by a proper pre-
sentation of all vessel parts, by a central position of
vertices and edges inside their corresponding vessel
part and a width fitting the radius of the vessel (see
e.g. figure 3(c)).

• The time performance of the method: In the appli-
cation described in section 1 the calculation has to
be nearly real-time. The VEG was tested on a PC
with Intel Pentium D CPU (two processor kernels with
3.00 GHz resp.), 2.0 GB RAM under Windows XP
with Service Pack 2. The given running times apply
to this PC.

2.5.1 Results on artificial data

Tests of the VEG on different artificial data sets (see above)
were run. An example result shown in figure 2 was cal-
culated with the set of parameters given in table 2. The
width of an edge was calculated as the average width of the
spheres of influence of both adjacent vertices.

For all tests the following extraction properties were
found:

• The width matches with the vessels radius.
• There are no vertices or edges outside the vessels.
• Smaller vessels are underrepresented.

Average extraction time was 3 s. This is fast enough for the
target situation.

2.5.2 Preliminary results on real data

Additionally first tests on different real US data sets have
been run. The data sets have been 3D ultrasound images
(Doppler or contrast enhanced) and vascular tree models
derived from the 3D MRI or CT data set. They were
recorded in a proband study as well as in real clinical ap-
plications. The VEG was used to extract the vascular tree
from the US data. The results were visually controlled.

The parameter set identified in tests on artificial data (see
chapter 2.4) could be used without deeper changes, except
the final net size. Because the data had a smaller volume
the final net size had to be reduced.

The results shown in figure 3(b) and 3(c) were calculated
with the parameter set amax = 125, εb = 0.2, εn = 0.006,
εw = 0.1, α = 0.5, d = 0.995, λ = 2500, nf = 15. The
extraction and calculation of the model took 1.776 s.

Other sample results are shown in figure 4(b) and 4(c).
They were calculated with the parameter set amax = 125,
εb = 0.2, εn = 0.006, εw = 0.1, α = 0.5, d = 0.995,
λ = 2500, nf = 9. Only the final net size was reduced
because the vessels in the US image were smaller. The
extraction and calculation of the model took 1.094 s.
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(a) set of vessel voxels, yellow: surface of the set of vessel voxels
from the artificial 3D ultrasound image data set

(b) Vessel Extracting Gas model, green: portal venous vessel tree
model from the Vessel Extracting Gas

Figure 2: Results of the Vessel Extracting Gas on artificial
data

In all tests there were no vertices outside the vessels, but
some inappropriate edges ran through areas not belonging
to a vessel. The radius of the vessels almost matches the
width of the edges. All parts of the vessels were repre-
sented, there was no over- or underrepresentation.

The average extraction time was 1.7 s, acceptable for the
given application.

3 Discussion
According to first results on real data VEG seems to be sta-
ble against the typical distortions in 3D Doppler or contrast
enhanced ultrasound (see e.g. [14]). The extraction of the
vascular tree model is, according to the criteria mentioned
above, acceptable and fast. Further testing on real data is
needed.

The successful application of this method to real medical
image registration will require that one fixed parameter set
can cope with most of the data. Otherwise the parameters

(a) set of vessel voxels, yellow:
surface of the set of vessel voxels
from a 3D proband’s contrast en-
hanced ultrasound image data set

(b) Vessel Extracting Gas model,
green: vascular tree model from the
Vessel Extracting Gas

(c) Vessel Extracting Gas model
merged with set of vessel voxels,
green: vascular tree model cal-
culated by Vessel Extracting Gas,
yellow: surface of the set of ves-
sel voxels from a 3D proband’s
contrast enhanced ultrasound im-
age data set

Figure 3: Results of the Vessel Extracting Gas on real data

have to be adjusted for every single image. In this case it
is important to know what adjustments have to be made for
what kind of image data. First tests indicated the presented
parameter set to yield acceptable results. Only the final net
size has to be adjusted according to the size of the vessels
given in the US image data.

The quality of extraction must furthermore be evaluated
in the context of the authentic registration process if it shall
be used in the medical target domain. Here the important
criteria are relevant improvement compared to the interac-
tive landmark based registration and a reduction of regis-
tration time.
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