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Abstract—Our previous studies assigned labels to 
mnSOM modules based on the assumption that winner 
modules corresponding to subsequences in the same class 
share the same label. We propose segmentation using 
hierarchical clustering based on the resulting mnSOM. 
Since it does not need the above unrealistic assumption, it 
gains practical importance at the sacrifice of the 
deterioration of the segmentation performance by 1.2%. 
We compare the performance of task segmentation for 
two kinds of module architecture in mnSOM. The result is 
that module architecture with sensory-motor signals as 
target outputs has superior performance to that with only 
sensory signals as target outputs. 

1 Introduction 
Task segmentation in navigation of a mobile robot based 
on sensory-motor signals is important for realizing 
efficient navigation, hence has attracted wide attention. 
Tani et al. proposed to generate a series of actions based 
on sensory-motor signals using a forward model 
represented by a recurrent neural network [2]. Tani and 
Nolfi [3] proposed 2-level hierarchical mixture of 
recurrent experts (MRE), which is an extension of the 
network architecture proposed by Jacobs et al. [8]. Tani et 
al. also proposed 2-level prediction networks for 
extracting spatio-temporal regularities [11]. Wolpert and 
Kawato [1] proposed MOSAIC architecture for motor 
control with the soft-max function for assigning 
responsibility signal to each module. 
 
In the conventional competitive learning, only a winner 
module or unit is highlighted, accordingly similarity 
between modules or units, and interpolation among them 
are not taken into account. There are two types of 
“interpolation:” the one is creating an output which is an 
interpolation of outputs of multiple modules, and the 
other is creating a module which is an interpolation of 
multiple modules. Let the former be called “output 
interpolation” and the latter be called “module 
interpolation.” The present study focuses on the latter. 
 

The soft-max [1] is an improvement over the conventional 
competitive learning in that the output interpolation is 
possible based on the responsibility signals produced by 
the soft-max function. Similarity between modules, 
however, is not explicitly represented. Furthermore, the 
soft-max function and segmentation do not generally 
coexist; only when the soft-max function is 
asymptotically equivalent to winner-take-all, segmenta-
tion is possible at the sacrifice of interpolation. Tani et al. 
proposed a recurrent neural network with a parametric 
bias [4]. It has the ability of the output interpolation, but 
has no longer the capability of segmentation. 
 
Self Organizing Maps (SOM)[12] is a popular method for 
classification, while preserving topological relationship 
between data. The resulting topological maps demonstrate 
the unit interpolation among units on a competitive layer. 
In contrast to SOM using a vector unit as its element, a 
modular network SOM (mnSOM) uses a function module 
as its element to increase its representation and learning 
capability [13][14][5]. Owing to competitive learning 
among function modules, mnSOM is capable of 
segmentation. Owing to topographic mapping of function 
modules on a competitive layer, neighboring function 
modules tend to have similar characteristics. Hence, 
interpolation among function modules becomes possible. 
The simultaneous realization of segmentation and 
interpolation is unique and unparalleled characteristics of 
mnSOM. It has also an advantage of computational 
stability in contrast to competitive learning due to careful 
assignment of learning rate to modules and data. 
 
We proposed to use mnSOM for task segmentation in 
navigation of a mobile robot [6][7]. In case of a mobile 
robot, however, the standard mnSOM is not applicable as 
it is, because it is based on the assumption that class 
labels are known a priori. In a mobile robot, however, 
only an unsegmented sequence of data is available. Hence, 
we proposed to decompose it into many subsequences, 
supposing that a class label does not change within a 
subsequence. Accordingly, training of mnSOM is done 
for each subsequence in contrast to that for each class in 
the standard mnSOM.  
 



Our previous studies assigned labels to mnSOM modules 
based on the assumption that winner modules correspond-
ing to subsequences in the same class share the same label. 
We propose segmentation using hierarchical clustering 
based on the resulting mnSOM. Since it does not need the 
above unrealistic assumption, it is expected to gain 
practical importance. 
 
We also compare the performance of task segmentation 
for two kinds of module architecture in mnSOM: sensory-
motor signals at the next time step as target outputs and 
sensory signals at the next time as target outputs. 
 
Section 2 briefly explains algorithms for mnSOM and 
hierarchical clustering. Section 3 describes experimental 
results. Section 4 provides conclusions and discussions. 

2 Task segmentation by mnSOM 

2.1 Data Segmentation  
Fig.1(a) illustrates the robotic field. The robot moves 
from the start position to the end position by wall 
following. During movement, the robot turns left twice 
and turns right twice. When the robot moves in the 
reverse direction, it experiences similar movements.  
 

 
(a) 

 
(b) 

Fig.1: Mobile robot and data segmentation 
(a) the mobile robot in the robotic field. (b) manual 

segmentation of sensory-motor signals 
 

The whole dataset are manually segmented into 9 
sequences based on motor commands as in Fig.1(b). 

Manual segmentation provides true class information, and 
is used for evaluation of the resulting segmentation 
performance, not for training of mnSOM. Sequences 1, 3, 
5, 7 and 9 correspond to a class of forward movement, 
sequences 2 and 4 correspond to a class of left turn, and 
sequences 6 and 8 correspond to a class of right turn. 
 
As mentioned in Introduction, we decompose the whole 
sequence into many subsequences of a uniform length, 
supposing that a class label does not change within a 
subsequence [6][7]. Each subsequence is assigned a label 
of the corresponding sequence. Due to uniform splitting 
of the whole dataset, however, some subsequences stretch 
over two consecutive sequences (i.e., a forward 
movement sequence and a left turn sequence). They are 
called “transition” subsequences, and constitute virtual 
classes. 
 

2.2 Algorithm of mnSOM 
An important issue in the design of mnSOM 

architecture is to choose appropriate function modules 
and similarity measure between modules. To deal with 
dynamical systems, recurrent neural networks (RNN) are 
suitable as function modules [2]. Learning of each module 
is done by backpropagation through time (BPTT) [9].  

 
mnSOM learns an internal model of robot-environment 
interaction by minimizing mean prediction error in 
sensory or sensory-motor signals at the next time step, 
given the current sensory-motor signals. We present a 
brief overview of an mnSOM algorithm [5][13][14].  
 
An mnSOM algorithm comprises the following 4 proces-
ses.  
(1) In an evaluative process, subsequences are fed into 
mnSOM modules, and their outputs are evaluated. Let  

))}(),({( tytx ii  )...1( Mi =  be a pair of current 
sensory-motor signals and the sensory-motor signals at 
the next time step, where M is the number of 
subsequences and t is the iteration number in mnSOM.  
(2) In a competitive process, the module with the 
minimum prediction error is determined as a winner.  
(3) In a cooperative process, the learning rate, , 
for module k and subsequence i is defined by the 
following normalized neighborhood function centered at 
the winner module. 
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where stands for the distance between module 

k and the winner module , 
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neighborhood radius, maxσ  is the maximum 
neighborhood radius, and τ is a neighborhood decay rate.  
(4) In an adaptive process, connection weights of module 
k , )(kw , are modified by the following BPTT algorithm,  
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where is the output error of module k in subse-
quence i.  
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These 4 processes are iterated, and mnSOM terminates 
when connection weights converge and the resulting 
mnSOM becomes stable. 

2.3 Clustering 
We apply hierarchical clustering to the resulting mnSOM 
to provide labels to modules without the assumption that 
winner modules corresponding to subsequences in the 
same class share the same label. 
 
The procedure of hierarchical clustering [10] is: 
1) Let each module form a separate cluster. 
2) Merge two clusters with the minimum distance. 
3) Recalculate the distance between clusters. 
4) Repeat steps 2 and 3 until the minimum distance 
between clusters exceeds a given threshold or the number 
of clusters reaches a given number of clusters. 
 
An essential issue in hierarchical clustering is the 
definition of the distance. First we select a subsequence 
which minimizes the mean square error of module k.

( )kiMSEm ik ,minarg=  (5)
where MSE(i,k) stands for the mean square error of 
module k given input subsequence i. The distance 
between modules k1 and  k2 is defined by: 
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The inclusion of only the subsequences and in 

the definition is to prevent the distance from being blurred 
by many less relevant subsequences.  

1km
2km

 
We then define the distance between clusters K1 and K2. 
Suppose that the cluster K1 is composed of modules, 

, and the cluster J is composed of modules, 

. The distance between them is defined by,
11 KRMM L
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where is the distance between two modules k

21kkd 1 and k2. 

3 Experimental Results 
Experiments are carried out using a Khepera II robot 
moving in the robotic field in Fig. 1 (a). It has 8 infra-red 
(IR) proximity sensors and 2 separately controlled DC 
motors. The sensors can detect an obstacle within 5 cm. 
The robot, performing wall following behavior, is 
controlled by a PC via serial connection. 

3.1 Task Segmentation by SOM 
As a preliminary study, a SOM with 10x10 nodes is 
employed to do task segmentation. Concatenation of 10 
dimensional raw sensory-motor signals at current time 
step and 10 dimensional raw sensory-motor signals at the 
next time step are used as input to SOM. Fig. 2 depicts 
the resulting SOM after 10000 iterations. We then label 
nodes in SOM under the assumption that winner nodes 
corresponding to input data in the same class share the 
same label. Those nodes which never become winners are 
labeled by the label of input data which is closest to the 
node concerned. Based on the resulting task map, we 
perform task segmentation. The segmentation rate is 
91.8% for training dataset and 90.5% for novel dataset. 
 

3.2 Task Segmentation by mnSOM 
We employ an mnSOM with 10x10 modules. Each 
module in mnSOM is a fully connected recurrent neural 
network (FRNN). All units in FRNN have sigmoidal 
activation functions. External input units in FRNN 
correspond to 8 IR sensors and 2 motor commands. To 
evaluate the role of motor commands, two kinds of target 
outputs are used: the former is the use of sensory signals 
at the next time step, and the latter is the use of sensory-
motor signals at the next time step. 
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Fig.2: The resulting task map using SOM (Label “F”, “L” 
and “R” correspond to winner of forward movement, left 
turn and right turn samples, respectively) 
 
mnSOM modules learn internal models of nonlinear 
dynamics of robot-environment interaction by minimizing 
mean prediction error of sensory or sensory-motor  
signals at the next time step, given the past sensory-motor 
signals. The resulting mnSOM provides a label to each 
module by the procedure in [6][7], under the assumption 
that winner modules corresponding to subsequences in the 
same class share the same label. The labeling procedure is 
approximately the following. For a winner module the 
label is given by the label of the corresponding input 
subsequence. For a non-winner module the lebel is given 
by the label of the input subsequence with the minimum 
MSE. 
 

 
 

Fig.3: The resulting task map by mnSOM with sensory 
signals as target outputs 

 
Fig. 3 illustrates the resulting task map with sensory 
signals as the target outputs, and Fig. 4 depicts that with 
sensory-motor signals as the target outputs. The modules 
in green color are the winners for forward movement 
subsequences, the modules in red color are the winners 
for left turn subsequences, and the modules in blue color 

are the winners for right turn subsequences. Let the 
modules in red and blue be called “turning modules.” The 
other two types of modules are transition modules: the 
modules in light red color for the transition between left 
turn and forward movements, and the modules in light 
blue color for the transition between right turn and 
forward movement. 
 

 
 

Fig.4: The resulting task map by mnSOM with sensory-
motor signals as target outputs 

 
To evaluate the segmentation ability of these task maps, 
training datasets as well as novel dataset are given to them. 
Table 1 summarizes the correct segmentation rate.  It 
indicates that mnSOM with sensory-motor signals as 
target outputs has superior performance to mnSOM with 
only sensory signals as target outputs.  
 

Table 1:  Summary of segmentation performance  
 

correct segmentation rate 
(%) target output for 

mnSOM training 
datasets 

novel 
Dataset 

sensory signals 80.35 82.14 
sensory-motor signals 96.73 94.05 

 

3.3  Hierarchical clustering 
We apply the standard hierarchical clustering to assign 
label to modules. Fig. 5 illustrates the result of clustering 
with 5 clusters including 2 virtual classes. Fig.6 illustrates 
the result of clustering with 3 clusters corresponding to 3 
basic classes: forward movement, left turn and right turn. 
Two virtual classes in Fig. 5 (represented by light blue 
and light red modules) are absorbed into right turn 
modules in Fig. 6.  
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Fig.5: The result of clustering for the resulting mnSOM  
(5 clusters) with sensory-motor signals as target output 

 

 
 

Fig.6: The result of clustering for the resulting mnSOM  
(3 clusters) with sensory-motor signals as target output 

 
Comparison of Figs. 4 and 5 demonstrates the similarity 
of colors to some degree. Supposing that color in Figs. 4 
and 5 has the same meaning, 85 modules (85%) share the 
same meaning.  
 

 
 

Fig.7: The result of clustering for the resulting SOM  
 
Hierarchical clustering also can help in assigning node 
label of the resulting SOM, without using the assumption 

that winner nodes corresponding to input data in the same 
class share the same label. Fig. 7 illustrates the result. 
Comparison of Figs. 2 and 7 also demonstrates the 
similarity of colors to some degree. 

3.4 Task Segmentation by clustering 
Fig.8. illustrates the task segmentation by hierarchical 
clustering applied to the resulting mnSOM, and labels for 
novel subsequences. The colored numbers of mnSOM 
modules represent subsequence numbers for which they 
become winners. Incorrect task segmentation occurs when 
the color of subsequence number does not match with the 
color of the corresponding winner module. 
 

 
 

Fig.8: Result of clustering and labels for novel 
subsequences 

 
Table 2 summarizes the segmentation performance by 
clustering applied to the resulting mnSOM as well as to 
the resulting SOM. It indicates that segmentation 
performance in mnSOM with 5 clusters is superior to that 
with 3 clusters. This is reasonable because the original 
number of clusters is 5. Comparison of Tables 1 and 2 
demonstrate that segmentation rate by hierarchical 
clustering is slightly inferior to that by SOM or mnSOM 
[7] with the assumption that winner modules 
corresponding to subsequences in the same class share the 
same label. Since segmentation by clustering does not 
need the unrealistic assumption, it is expected to gain 
practical importance. 
 
Current sensory-motor signals have very small fluctuation, 
hence the segmentation performance by clustering of the 
resulting SOM is very good both for training data and 
novel data. Suppose there exist a right turn movement for 
a very short period. It is easily interpreted as right turn. In 
this way, segmentation by SOM is easily affected by 
fluctuation and noise in data.  In contrast to this, mnSOM 
is expected to be more robust than SOM, because it learns 
nonlinear dynamics of a mobile robot concerned. We 
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have not done segmentation using SOM for data 
corrupted by noise, which is left for future study. 
 

Table 2:  Summary of segmentation performance by 
clustering 

 
correct segmentation 

rate (%) 
applied to 

training 
datasets 

Novel
dataset

mnSOM (5clusters) 89.29 92.85 
mnSOM (3 clusters) 83.93 89.26 

SOM (5 clusters) 94.3 94.0 

4 Conclusions and Discussions 
Our previous studies on task segmentation adopted an 
assumption that winner modules corresponding to 
subsequences in the same class shared the same label. We 
proposed task segmentation using hierarchical clustering 
based on the resulting mnSOM. Since it does not need the 
above unrealistic assumption, it gains practical impor-
tance at the sacrifice of the deterioration of the segmenta-
tion performance by 1.2%.  
 
We compared the performance of task segmentation for 
two kinds of module architecture in mnSOM. The result is 
that module architecture with sensory-motor signals as 
target outputs has superior performance to that with only 
sensory signals as target outputs. 
 
In the current study sensory-motor signals are obtained 
from a real mobile robot off-line, and task segmentation is 
done successfully based on them. In a real world situation, 
the sequence proceeds as follows. Take an action, observe 
sensory signals, determine a winner module based on the 
criterion of the mean square error (MSE), determine 
motor-control signals from the output of the winner 
module, and so forth. As can be seen from this, goodness 
of motor-control signals depends on sensory-motor 
signals for training. How to select a set of sensory-motor 
signals is an issue yet to be solved and is left for future 
study. 
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