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Abstract— In todays bioinformatics, Mass spectrom-
etry (MS) is the key technique for the identification of pro-
teins. A prediction of spectrum peak intensities from pre
computed molecular features would pave the way to bet-
ter understanding of spectrometry data and improved spec-
trum evaluation. We propose a neural network architecture
of Local Linear Map (LLM)-type based on Self-Organizing
Maps (SOMs) for peptide prototyping and learning locally
tuned regression functions for peak intensity prediction in
MALDI-TOF mass spectra. We obtain results compara-
ble to those obtained by ν-Support Vector Regression and
show how the SOM learning architecture provides a basis
for peptide feature profiling and visualisation.

1 Introduction
In todays bioinformatics, Mass spectrometry (MS) is the
key technique for the identification of proteins. Matrix-
assisted laser desorption ionization (MALDI) is one of the
most often used technique for the analysis of whole cell
proteomes in high-throughput experiments. There are dif-
ferent applications of MALDI-MS where the prediction of
peak heights (referred to as intensities) in the spectrum are
needed for further improvements: Protein identification is
commonly done by comparing the peak’s masses from a
spectrum – the so called protein mass finger print (PMF) –
to theoretical PMFs in a data base, generating a score for
each comparison. Different tools are available for this pur-
pose. For an overview see [SCB05]. These tools rarely
use peak intensities, because there is no model to calculate
the theoretical PMFs directly. The use of peak intensities
could improve the reliability of protein identification with-
out lowering the error rate, as was shown by Elias et al. for
tandem MS[EGK+04].
Another application of MALDI where peak intensities are
important is quantitative proteomics, where proteins in
a complex sample are quantified or protein abundances
across different samples are compared.

For the prediction of MALDI PMF there has been one
study so far by Gay et al. who applied different regression
and classification algorithms[GBHA02]. Tang et al. used
multi-layer neural networks to predict peptide detectabil-

ities (i.e. the frequency with which peaks occur in spec-
tra) in LC/MS ion trap spectra[TAA+06] which is a related
problem.

An algorithmic approach for peak intensity prediction is
a non-trivial task because of several obstacles: The extrac-
tion of PMF from spectra is a signal processing task which
can not be done perfectly. Data from this domain is al-
ways very noisy and contains errors introduced by prepro-
cessing steps in the wet lab as well as in signal processing.
Misidentifications may even lead to wrong sequences. In-
tensity values can be distorted due to the unknown scale of
spectra. It is nearly impossible to come by a large enough
data set from real proteins where the content is known,
i.e. there is no perfect gold standard, because of the not
reproducible and non-unique peptide/intensity relation.

To overcome these obstacles to predict peak intensities
in MALDI-TOF spectra based on a pre-selected training
set of peptide/peak intensity pairs, a method is needed,
that is able to (a) determine peptide profiles and (b) learn
locally tuned regression functions for peak intensity pre-
diction. For this purpose we consider a artificial neural
net architecture of Local Linear Map(LLM)-type, since
it combines unsupervised (a) and supervised (b) learning
principles based on (Multi-) Self-Organizing Maps (Multi-
SOMs) [GS06].

The LLM-architecture is well suited for this task due to
its transparency. It is simple to implement, can cope with
large data sets, is easy adaptable to new data by a slight
deviation of the parameters without loss of information.
Other than for example support vector regression (SVR)
it can be used for data mining once adapted in a straight
forward manner, as demonstrated in this work. We propose
a combination of unsupervised and supervised learning ar-
chitecture with comparable results in predicting the peaks’
intensities to ν-Support Vector Regression (SVR).The mix-
ture of linear experts derives implicit models for charac-
terizing peptides and feature analysis as an unsupervised
learning task. The second step consists of supervised adap-
tation of the neural network and prediction of peaks’ inten-
sities.



2 Materials and Methods

2.1 Data
In this study we use two datasets A and B of peptides of
MALDI mass spectra. The first one,A, consists of 66 spec-
tra of 29 different proteins, with 16 of these proteins being
present in multiple spectra, whereas dataset B consists of
200 spectra of 137 different proteins with 39 of these pro-
teins occurring multiple times.
Peak extraction steps include soft filtering, baseline cor-
rection, peak picking and isotopic deconvolution in the
corresponding raw spectra. The resulting list of peaks is
matched against masses derived from a theoretical tryptic
digestion. These steps for A (and B respectively) result
in 857 (1631) matched peaks corresponding to 415 (1135)
different peptides.
For preprocessing, normalization of the intensities is nec-
essary, because spectra do not have the same scale. For a
MALDI spectrum the exact amount of protein sample that
leads to it is not known, nor is it possible to scale spectra
belonging to the same protein by the same amount. There
is no peptide that connects the scales of spectra.
The normalized intensities are therefore computed follow-
ing two different heuristics, in order to use values from dif-
ferent spectra together. In the remainder, the intensities
refer to scaling the original matched peaks intensity Iorig

after denoising and baseline correction by the sum of all
i = 1, . . . , N values in the whole spectrum yielding IS :

IS =
1000 · Iorig

i∑N
i=1 Iorig

i

with Iorig
i = Ii −Bi −Ni.

Subsequently, the natural logarithm of the intensities is ap-
plied to compute the final intensity output values.

2.2 Feature Sets
One of the most important questions in conjunction with
finding a model for predicting peak intensities is the rep-
resentation of the peptides. A suitable feature space is the
precondition for success of any machine learning method.

We combine different properties of peptides to represent
features of a peptide. Amino acid frequencies, typically
used in bioinformatics, in conjunction with chemical fea-
tures of the peptides are used to create the heuristically
selected 18-dimensional feature space is built by differ-
ent types of characterization we assume to be relevant for
MALDI ionization and additional features that are chosen
in an ad hoc feature forward selection.
Most of the peptides in the data set occur multiple times in
different spectra with different intensity values. To elim-
inate outliers (potential noisy peptides) and to map each
peptide to one unique value, the α-trimmed mean of all in-
tensities per distinct peptide with α = 50% is computed. It
is defined as the mean of the center 50% of an ordered list.
In the case of less than 4 peptides in the list a simple mean

is taken. In the remainder, we refer to data points from A
and B in the heuristically selected feature space with the
α-trimmed mean calculated target values as datasets ATM

and BTM.

2.3 Local Linear Map
The task of mass spectrometry prediction and peptide pro-
totyping corresponds to the task of unsupervised cluster-
ing as well as classification and supervised prediction. The
problem can be stated as follows:
Given a training set Γ = {(x,y)i, i = 1, . . . , N}, consist-
ing of input-output pairs: peptide patterns xi which are el-
ements of feature space X = IRt, and real-valued outputs,
i.e. intensities, yi ∈ IR. One promising approach would be
to find a set of clusters and prototypes representing the data
points best according to the statistical properties of the data
provided. After assigning every input point to a prototype,
a prediction of a real-valued output Y has to be done.

For determining peptide prototypes and learning into
the mapping the output, i.e. intensity space, we propose
to use a SOM variant of the Local Linear Map (LLM)-
architecture. The LLM combines unsupervised vector
quantisation algorithm for computing a voronoi tessellation
of the input space X with supervised techniques for feature
classification.

The artificial neural net (ANN) of Local Linear Map-
type [Rit91] was indeed originally motivated by the Self-
Organizing Map by Kohonen [Koh82] and has been shown
to be a valuable tool for the fast learning of non-linear map-
pings C : IRdin → IRdout .
A LLM consists of nl nodes vi, i = 1, . . . , nl. Each node
consists of a triple vi = (win

i ,wout
i ,Ai). The vectors

win
i ∈ IRdin are used to build prototype vectors adapt-

ing to the statistical properties of the input data xξ ∈ IRdin

provided. The vectors wout
i ∈ IRdout approximate the dis-

tribution of the target values yξ ∈ IRdout . The matrices
Ai ∈ IRdin×dout are locally trained mappings from the in-
put to the output space.

Vector quantisation by Self-Organizing Maps For the
task of unsupervised training in the input space we apply
SOMs and combine it with the LLM into the output space.
In addition, we explored an extension of recently proposed
Multi-Self-Organizing Maps (Multi-SOMs) as a set of sev-
eral neural networks, each of them accounting for certain
input space data structures.
The partner SOMs in a Multi-SOM are not necessarily
identical, but can differ in size, dimension and topology.
For our purpose we use K identical 2-dimensional partner
SOMs, denoted as K − n×m SOMs.
There are two extreme configurations of Multi-SOMs
demonstrating the range of paradigms that can be realized
with an M-SOM: With K = 1, the M-SOM consists of just
a single, classical SOM. The other extreme situation, with
K partner SOMs, having minimal size n = m = 1, the
M-SOM performs a K-Means-algorithm.
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In the unsupervised training phase the n · m prototype
vectors of the winning SOM are adapted following SOM
learning rule: The neurons are adapted according to their
distance between the input pattern xξ and winning proto-
type vκ. The learning procedure changes the weights ac-
cording to the gaussian neighborhood function hσ . After
adapting the prototypes, each of the input vectors x can
be associated with its closest prototype as a winner-takes-
all (WTA) rule: wκ = arg minw

{
‖x−win

i ‖
}

. We also
applied Neural Gas clustering [MBS93] instead of SOM
leaving the input space for comparison.

Training of local mappings from input to the output
space is performed in the second step. Subsequently to
unsupervised adaptation and tessellation of the input space
X , a local expert is assigned to each of the K ·n·m voronoi
cells. The mapping of an arbitrary input vector x to an out-
put C(X) is computed by

C(x) = wout
κ + Aκ

(
x−win

κ

)
by the corresponding local expert wκ. The weights wout

i

and the linear map Ai are changed iteratively applying the
learning rules1:

∆wout
i = εout · hσ · (yξ − C(xξ)) ,

∆Ai = εA · hσ · (yξ − C(xξ)) ·
(xξ −win

i )T∥∥xξ −win
i

∥∥2 .

2.4 Evaluation
About 10% of the centered and normalized data are used
for validation and put aside. The remaining dataset is used
to train the LLM and to find the best parameter set using
10-fold Cross-Validation (CV). So, the remaining dataset is
split into 10 portions and one set is used for testing perfor-
mance of the selected model. It was ensured that peptides
from one spectrum as well as peptides occurring in more
than one spectrum are found in only one of the portions.

Model selection: Grid search over the parameter space
P =

(
K, n,m, εA

)
is performed to determine optimal pa-

rameters for learning. The remaining learning parameters
for the LLM were set to initial values εout = 0.3, εin = 0.5
and σ = 2 decreasing exponentially over time to final val-
ues εout = 0.01, εin = 0.01 and σ = 0.4. A 10-fold-CV is
done for each parameter set. For every point in the parame-
ter space the prediction accuracy for every training/test set
is determined by squared pearson-correlation coefficient r2

and root mean square error RMSE of the test set. The
choice of the best parameter set is made by the best mean
r2 over all 10 test sets while training the learning algorithm.

Model assessment: The final model with the optimal
parameters is chosen. To validate its prediction (general-
ization) error on new data, the validation set is used, which
has not taken part in training.

1It has to be stated that for Multi-SOMs with K > 1, the local
experts are adapted following Neural-Gas (NG) learning rule replacing
hσ = hσ (rκ(x, l)), because the grid structure can no longer be hold up.

3 Results

We compare the prediction performance for the two
datasets ATM and BTM containing peptides mapped by
α-trimmed mean (2.2). The following results are evalu-
ated with respect to the squared pearson correlation r2 and
RMSE for the 10 test sets and the validation set. The val-
idation set of ATM consists of 44 items and for BTM of
112 items.

3.1 Peptide Prototyping

A display of the prototype vectors resulting from the Self-
Organizing Map training allows a profiling of peptides. In
the following Fig. 1 the resulting parallel coordinates plot
for six prototypes in case of BTM is shown.

The correlation of input space reflects in the proto-
type distribution. We can see that some of the features
(’GB500’,’Y’) show a correlation to the mass, while no
such tendency can be observed for other features. The six
prototypes take three to five levels for each feature, two or
more prototypes sharing the same region. ’OOBM850104’
(measure of non-bonded energy), ’ROBB760107’ (infor-
mation measure) and ’M’ (no. of methionine) show the
least similarity to any other feature.

If we look closer at the prototypes, it can be seen that
there are existing pairs covering outmost areas in data space
in almost all features (prototypes 1 and 6 except for ’H’) as
well as prototypes covering contrary regions in data space
(e.g. prototypes 1 and 6, 3 and 5,2 and 4). Another thing
to be noted is that prototypes 1 and 3 are near to each other
for almost all features, except for ’ARGP820102’ and ’F’ ,
where they split up to almost the extremes. Similar behav-
ior can be observed for the prototypes 5 and 6.

’ROBB760107’(information measure), ’FINA770101’
and ’KHAG800101’ (kerr constant increment) show the
most even distribution of prototypes. Thus the prototypes
share ranges in certain features and split up for others,
achieving a nice spread in data space: For a data point that
is similar to two prototypes sharing their space for a set
of features, other features decide which prototype it is as-
signed to.

3.2 Predicting Peak Intensities

We compare the prediction capabilities of the LLM for the
two data sets ATM and BTM. The evaluation is done as
described in 2.4. We perform a grid search over all pa-
rameters and the parameter set is chosen yielding the best
mean r2 of training/test sets. For the exact results of r2 and
RMSE see Tab. 1. A scatter plot with target vs. predicted
values for dataset BTM predicted by a N = 2 × 3-SOM-
LLM is shown in Fig. 2.
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Figure 1: Parallel coordinates plot for six prototypes in case of BTM. For every feature the range of values covered by
the prototypes is shown.

3.3 Comparison prediction performance of
SOM to Neural Gas

For a comparison of the prediction and generalization per-
formance of SOM and Neural Gas, the evaluation of the
studied datasets ATM and BTM are shown. Due to the
the difference of topology of these learning methods, the
SOMs topology was kept fixed as N = n × 2, (K = 1),
and its performance compared to the one of NG with N
neurons.
In Fig. 3 an iteration over N = 1, . . . , 18 is done. The fig-
ure (a) shows the corresponding correlations (r2) for the 10
test sets as well for the validation set.

4 Discussion
Our results show that the SOM-LLM-approach combining
data mining and supervised learning yields similar results
in prediction accuracy to our first approach utilizing ν-SVR
[TBTN06] and Neural Gas.

From our results it is clear that peak intensities can be
characterized and predicted by the use of the heuristically
selected feature set with high prediction accuracy. The vi-
sual inspection of the prototypes reveals that the peptides

Table 1: Comparison of capabilities of the LLM in pre-
dicting intensities for the studied datasets ATM and BTM.
The evaluation was done for N prototypes in case of SOM
and NG.

Test Valid

Dataset r2 RMSE r2 RMSE

ATM,N = 2× 2 0.438 1.126 0.260 1.356
ATM,N = 4 0.416 1.158 0.117 1.765
ATM, ν − SVR 0.399 1.03 0.311 1.140

BTM,N = 2× 3 0.252 1.119 0.403 0.954
BTM,N = 6 0.251 1.114 0.355 0.993
BTM, ν − SVR 0.292 1.082 0.381 0.973

can be grouped around a set of approximately 6 profiles.
Those seem to have individual mappings to peak intensity
which can be discussed with biochemical experts.

In Fig. 3 the results of the prediction accuracy deter-
mined by r2 and RMSE with SOMs and Neural Gas for
data set ATM are summed up. Both SOM and NG yield
a similar behavior with respect to prediction performance.

Figure 2: Scatterplot with target vs. predicted values for
dataset BTM predicted by a N = 2 × 3-SOM-LLM. The
upper plot shows the resulting predicted values of the 10
test sets, the lower shows the predicted values of the vali-
dation set.
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As the number of neurons increases (N > 4, where the
optimum is reached), the clustering error for both learning
paradigms decreases, while the prediction error and corre-
lation for the 10 test sets also decrease and increase for the
validation set. Furthermore, it can be observed that though
a worse clustering error of SOM-learning, the prediction
error for the 10 test sets as well as for validation is smaller
than that of NG-learning and yields better prediction per-
formance. The number of neurons is a critical size due
to overfitting of training data. In Fig. 4 the results of the
prediction accuracy for different number of prototypes are
summed up. The mean performance of the 10 test sets is
compared to the performance of the validation set. The
fact that some test sets performance is worse (especially for
dataset ATM) than the performance of the chosen valida-
tion set, can be explained by the static choice of the set. The
different portions of ATM set yield a wide spread of corre-
lation, resulting in high standard deviation of r2 over all the
portions. There are test sets that seem significantly worse in
prediction performance over all training sets. There exists
a positive correlation to the number of test set examples.
The studied datasets differ in their prediction performance
and can be separated well in Fig. 4(a) and (b). For dataset
ATM a wide spread in test and validation performance can
be observed for NG-LLM as well as SOM-LLM, whereas
for using SOM architecture in both cases better results in
correlation and prediction error are achieved. Future in-
vestigation will investigate how to immprove the NG based
results. From the evaluation and experiments of the under-
lying heuristically selected feature space can be assumed
to very compact with very sparse located outliers off the
center. A strong hint for this assertion is the prediction per-
formance in case of only 1 neuron (see.Fig. 3).

There are two conflicting targets that have to be reached:
First is minimization of the clustering error, and second
the minimization of prediction error yielding maximiza-
tion of prediction performance. The trade-off in general-
ization performance can be observed between adaptation to
the data and training of local mappings from input to out-
put depending on size and topology for both LLM-learning
algorithms.

5 Conclusions

We propose an algorithmic approach for peak intensity pre-
diction in MALDI-TOF spectra. The proposed model for
peptide prototyping and prediction of peak intensities with
the architecture of Local Linear Map-type has been shown
to be a valuable neural network tool for these tasks combin-
ing unsupervised and supervised learning architecture. The
LLM includes determining peptide profiles in the data set
and the mixture of linear expert are able to learn locally
tuned regression functions for peak intensity prediction.
The heuristically selected feature space is a good choice
as the characteristics of peptides are reflected. Some fea-

Figure 3: Results of the prediction accuracy for ATM. It-
eration is done over N = 1, . . . , 18 number of neurons,
with N = 2×n (SOM),K = 1, and N (NGas) neurons re-
spectively. (a) For every evaluation the results of the mean
performance of the test sets is plotted as well as the perfor-
mance of the validation set. The best mean test correlation
is yielded by a 2 × 2-SOM. While the prediction accuracy
for the 10 test sets decreases, the prediction accuracy for
validation set increases proportional to the number of neu-
rons. (b) It can be stated that the clustering error for SOM
tends to be worse than for NGas. (c) The prediction error
increases for SOM and NG in case of test sets to the same
degree, whereas the prediction error of the validation set
for the SOM is much smaller than that for NG.
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Figure 4: Results of the prediction accuracy measured by
(a) r2 and (b)RMSE for the evaluated data sets ATM and
BTM with SOM as well as NGas. For every evaluation the
results of the mean performance of the test sets is plotted
against the performance of the validation set. The predic-
tion accuracy of the two datasets can be separated well,
where BTM yields (a) a lower test correlation, but higher
validation correlation, whereas for ATM is the opposite.
(b) ATM yielding higher error compared to BTM and a
wide spread of error. (c) For this plot a discrimination ac-
cording to the number of M-SOMs used is done. The best
results are found for K = 1-SOM with N = 2×3 neurons.

tures do not contribute to the assignment of data points to
one of the prototypes. If this is due to the number of other
features slightly correlated to each other or if they really
carry no information with respect to the target values has
to be the subject of further studies. The experiments with
the considered data set have demonstrated the capabilities
of the SOM-LLM approach in direct comparison to NG-
LLM as well as ν-SVR.
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