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Abstract— Self-Organizing Maps for Structures
(SOM-SD) are neural networks models capable of process-
ing structured data, such as sequences and trees. The eval-
uation of the encoding quality achieved by these maps can
neither be measured exclusively by the quantization error
as in the standard SOM, which fails to capture the struc-
tural aspects, nor by indices measuring topology preserva-
tion, because often there are no measures available for dis-
crete structures. We propose new indices for the evaluation
of encoding quality which are customized to the structural
nature of input data. These indices are used to evaluate the
quality of SOM-SDs trained on a benchmark dataset intro-
duced earlier in [2]. We show that the proposed indices
capture relevant structural features of the tree encoding ad-
ditional to the statistical features of the training data vectors
associated with the tree vertices.

1 Introduction

Self-Organizing Maps (SOMs) [6] have been developed
with the aim to visualize high-dimensional data in few di-
mensions, usually a regular two-dimensional grid of nodes,
while preserving the most important topological and/or
metric relationships of the high-dimensional data elements
on the grid. The parameters which define the function
implemented by a SOM are obtained by an unsupervised
learning procedure. The evaluation of the “quality” of a
map is not an easy task, since the standard quantization er-
ror does not take into consideration how well the topology
of the input data is preserved. For this reason, some mea-
sures of topology preservation have been proposed in the
past, e.g. [1, 5, 8, 7].

Recently, a SOM based model, i.e. SOM-SD [2], capa-
ble of processing structured data, such as sequences and
trees, has been proposed. Such varying size data struc-
tures occur in natural language processing, HTML docu-
ment and structured text analysis, robotics, or cheminfor-
matics and bioinformatics. The evaluation of the “qual-
ity” of SOM-SDs is even more difficult, since input data is
structured. Of course, just using the quantization error is
not enough and the topology preservation measures men-
tioned above are useless since they are defined on vectorial

metric spaces and it is not so obvious how to generalize
them to structured domains. Up to now, the only way to
evaluate the “quality” of a SOM-SD was through visual in-
spection of the mapping realized for selected input struc-
tures.

In this paper, we address this problem and propose new
indices for measuring, in a quantitative way, how well
structural features of the input data are preserved.

2 The SOM-SD framework

SOM-SD is a SOM capable of processing structured input
in the form of a directed acyclic graphT taken from a data
set of input graphsT . Each vertexv of the graphT has
attached a data vector, which can be real or discrete valued.
Because the graph is assumed to be directed, for each ver-
texv the set of child vertices is well defined and denoted by
ch[v]. SOM-SD can be understood as the recursive appli-
cation of a standard SOM where the input is properly coded
to take in consideration the data vectors together with the
structural information summarized bych[v]. For SOM-SD,
a network input vectorxv represents the information of a
vertexv ∈ V (T ) concatenating the data vectorv and the
coordinates of the mapping, on the same network, of child
nodesych[v] so thatxv = [v, ych[v]]. We consider only
two-dimensional maps such thatych[v] contains for each
child ofv the two-dimensional map-coordinates of the win-
ner node for that child. The vectorsych[v] can be made con-
stant in size if the maximum out-degree of any vertex in the
dataset is known. Assuming that the maximum out-degree
is o, then for vertices with less thano children, padding
with a default coordinate, typically the “impossible” coor-
dinate (-1,-1), is applied. As a result, thex arek = p + 2o

dimensional vectors, wherep is the dimension of the data
vector. The codebook vectorsm are of the same dimen-
sion.

In order to account for the coding of both vertex data
vector and structural information in the same input item,
the winning neuron is selected by using a modified Eu-
clidean distance, i.e.r = arg mini ‖(xv − mi)Λ‖ where
Λ is ak× k dimensional diagonal matrix. Its diagonal ele-
mentsλ11 · · ·λpp are set toµ1, all remaining diagonal ele-



ments are set to1−µ1. The constantµ1 weights the contri-
bution of the data vector component against the influence of
the children’s coordinates representing the structural infor-
mation Intuitively, setting large values forµ1 focusses on
the data vectors but reduces the SOM-SD’s ability to rep-
resent structural information and reduces the accuracy with
which information is passed on to parent nodes. Smallµ1

emphasise mapping precision according to structural infor-
mation but neglect the importance of the information pro-
vided by the data vectors. We will derive a new measure
which shows exactly this tradeoff quantitatively. See [2]
for more details on SOM-SD.

3 Evaluation measures

It is very difficult to evaluate the ability of a map to encode
relevant spatio-temporal relationships contained in the in-
put trajectories. There are different issues that must be con-
sidered. First of all we would like to have a small quanti-
zation error, i.e. we would like the weight vectors to retain
all the statistical information about the data vector distribu-
tion. Moreover, we would like the map to preserve also the
main temporal (or more in general, structural) features of
the trajectories, i.e., the “history” or “contextual” informa-
tion contained in the trajectories (e.g. that a point in space
is reached by a trajectory only passing across a specific sub-
space and following a specific direction). This means that
we expect that the same region of the input space is “cov-
ered” by several neurons, each one specialized to recognize
from which origin and direction the trajectory reaches that
region. Of course, this ability should be obtained with no
reduction of the quantization capability of the network.

In this paper, we address this issue on the represen-
tation side, i.e. we ask how a trajectory of a structured
object can be represented such that both contextual in-
formation is preserved and quantization error is minimized.

Quantization Error. If with r(xv) we denote the index of
the winning neuron for inputxv, v ∈ V (T ), the (squared)
quantization error for the standard SOM is defined as

Esom =
∑

T∈T

∑

v∈V (T )

(xv − mr(xv))
2.

This way of computing the quantization error, however, in-
cludes also the structural component introduced by the in-
put encoding. We can avoid this contribution, when con-
sidering SOM-SD, by computing the quantization error as:

Esom−sd =
∑

T∈T

∑

v∈V (T )

(v − m̂r(xv))
2,

wherem̂ is the sub-vector obtained by selecting the firstp

components of the code vectorm, i.e., the portion which
refers to the input label.
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Figure 1: Representations of different mappings for trees
with 2D labels.νi represent the 2D weight vectors associ-
ated to neurons, while labels attached to tree’s vertices are
represented byvi. and are connected by directed arcs rep-
resenting the trees’ topology. The direction of the arcs is
inverted with respect to a standard representation for trees
in order to represent the fact that vertices are presented to
the map according to an inverted topological order. Arcs
are annotated by numbers (either 1 or 2) representing the
position assigned to each child. The immediate receptive
field for neuronν1 is R1(0) = {v1, v2, v5, v6, v7}, i.e. the
children of vertices for whichν1 is the winner node. The
spread of data (2-D positions) attached to vertices belong-
ing toR1(0) is larger for the data shown in the left side box
than for data shown in the right side box, consequently the
map encoding is better for the right hand side data.

Simple Contextual Error. In order to understand how
structural information is codified, let us define theimme-
diate receptive fieldRi(0) of a neuron with indexi, i.e.
all the child vertices of parents for which neuronni is the
winner:

Ri(0) = {u ∈ T , T ∈ T |u ∈ ch[v], r(xv) = i}.

We can then define the immediate context as the set of
“predecessors” of inputs inRi(0) and, recursively the set
of “predecessors” of “predecessors” of inputs inRi(0):

Ri(j) = {u ∈ T , T ∈ T |u ∈ ch[v], v ∈ Ri(j − 1)}.

The definition of these sets is particularly useful, since,
given a neuronni, we can look at all the inputs which are
j steps back with respect to inputs in theimmediate recep-
tive fieldand check if they are spread or concentrated. In
the first case, it means that the neuron is not able to codify
the history of the input, while in the last case it means that
the neuron is actually able to do it. An example of imme-
diate receptive field is given in Figure 1, assuming that the
training data is constituted by just two trees with root nodes
v4 andv9. Then the immediate receptive field for neuron
n1 is defined by the setR1(0) = {v1, v2, v5, v6, v7}. The
left part of the figure shows an immediate receptive field
for neuronn1 which exhibits a larger spread than the one
represented in the right side box. For a givenj, we can
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Figure 2: The spread of 2-D position data attached to ver-
tices belonging toR1(0) = {v1, v2, v6, v7} is much smaller
for the data shown in the right side box than for data shown
in the left side box when considering children in the same
position (either 1 or 2.)

quantify the degree of encoded context of neuronni, i.e.
history, by computing the sample variance of the label data
over the datasetT :

σ2(i, j) =
1

|Ri(j)|

∑

u∈Ri(j)

(u − u)2

whereu is the sample mean (computed overRi(j)) of the
labels. Finally, we can average over all the neurons in a
map to get a “global” evaluation of the map:

C(j) =
1

N

N
∑

i

σ2(i, j).

The above measure can be understood as a direct
generalization of the temporal context measure defined for
sequences in [4, 9] to structures but in this simplicity it
has a major drawback when considering structural data.
It is impossible to discriminate contexts where children
occurring in the same position are concentrated while
looking across different positions they are quite different
(Fig. 2, right), from contexts where children occurring
in the same position are spread around as well as when
looking across different positions (Fig. 2, left).

Structure Respecting Contextual Error. In order to dis-
criminate the different contexts over structures, we need
to take into consideration the co-occurence of children of
the same vertex. This should be done considering both the
topology of the input structures and the label attached at
the vertices. First consider the special case that each input
structure is constituted by a fully complete structure, e.g.
a complete binary tree. Denote byp ∈ path(T ) a path
p from the set of possible pathespath(T ) of the treeT .
Then, given an input structure, it is easy to keep track of
co-occurences by focusing on the set of vertices which can
be reached by a pathp of lengthlen(p) = j starting from
a specific vertex, and then building up a single vector ob-
tained by the concatenation of the labels attached at each

vertex of the above defined set. In order to exemplify, let
consider the above case of complete binary trees. Then,
each (relative) path of lengthl can be described by a string
of lengthj from the alphabet{l, r}, where the symboll in-
dicates that the left child has been followed, and the symbol
r indicates that the right child has been followed. Thus, if
j = 2, we have the 4 possible pathsll, lr, rl, rr. For
each input treeT , given a vertexu ∈ T , we can now build
the following context vectorγ(u, 2) ≡ [vll, vlr, vrl, vrr],
wherevll is the label attached at the vertexv reached by
starting fromu and following the pathll, and so on for the
other paths. Using this definition, we can define the follow-
ing sample variance:

σ2
γ(i, j) =

1

|wini|

∑

u∈wini

(

γ(u, j) − γ(u, j)
)2

,

whereγ(u, j) is the sample mean ofγ(u, j) andwini the
set of vertices in the training set for which neuroni is the
winner node.

The problem with this definition is that it is not clear
what to do when the input trees are not all complete. In
fact, in this case we are faced with the problem that going
backward from a vertex towards the frontier of the input
tree, different paths may end earlier than others, thus ren-
dering impossible to produce a well formed vectorγ(u, j).

Here we suggest to proceed as follows. First of all, we
compute the label variance on each single (relative) path,
then we take the expected value of this variance over paths
of the same length. More formally, givenwini(p) be the
subset of verticesu in wini for which there exist a (relative)
pathp(u), the sample mean for the labels reachable byp

(starting from any vertex inwini(p)) is defined as:

µπ(i, p) =
1

|wini(p)|

∑

u∈wini(p)

vp(u).

We can now define the following sample variance:

σ2
π(i, p) =

1

|wini(p)|

∑

u∈wini(p)

(

vp(u) − µπ(i, p)
)2

and compute its expected value over paths of the same
lengthj:

E2
π(i, j) =

∑

p | len(p)=j

fi,j,p σ2
π(i, p),

where

fi,j,p =
|wini(p)|

∑

q | len(q)=j |wini(q)|
.

Again, we can average over all the neurons in a map to get
a “global” evaluation:

Cπ(j) =
1

N

N
∑

i

σ2
π(i, j).
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Figure 3: Graph structure of two policemen (data labels are
not shown). Nodes are numbered to indicate which element
they represent.

Computation. An efficient computation of the variance
measure is not trivial, because the number of possible
paths within a tree grows exponentially with their maximal
length and the measures also require to compute variances
for each node in the map separately. But in practice, only
few of these paths actually occur in real applications and it
is possible to exploit that each vertex of a tree contributes
to the variance with respect to one path of a given length
for a single winner. Given that all means and variances can
be computed incrementally and recursively, we use the fol-
lowing strategy to determine all relevant quantities in two
steps. First we determine for each vertex the correspond-
ing winner node in the (trained) SOM-SD map. Then, for
each vertex and up to a given depth, we determine all paths
the vertex is part of and update the means and variances
for these paths and the respective winner incrementally by
moving to the parent and using the information which is
the winning node for this parent. Only if a new type of
path or a new winner node is encountered, memory is al-
located and the incremental computations are initialized.
Thereby all computations can be performed by two sweeps
over all vertices, one for determining the winners, and one
for computing the variances.

4 Data and experimental setup

For the experiments, we used the dataset given in [2]. In
essence, the dataset is composed of labeled directed or-
dered acylic graphs (DOAGs) extracted from images pro-
duced by means of a context free attributed plex gram-
mar. The dataset consists of visual patterns and associated
graph structures from three different domains. A number of
classes are defined for each domain. Structural representa-
tions are obtained by a scan line algorithm where images
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Figure 4: Artificially generated houses and associated
graph structure. Data labels are not shown. Nodes are num-
bered to indicate which element is represented.

are scanned from bottom to top, and from left to right. The
first colored object found constitutes the root node. Ob-
jects directly connected form the offsprings. Applied re-
cursively, all objects are considered and a graph represen-
tation is obtained. Each node in the graph receives a two
dimensional label stating the{x, y} coordinate of the cen-
ter of gravity of the corresponding object. Examples are
illustrated in figure 3, figure 4, and figure 5.

The result is a dataset that provides directed acyclic
graphs with the following properties:

Outdegr. Depth Num. nodes Num.
Data set Max. Min Max Min Max classes
Policemen 3 4 5 9 11 2
Houses 5 2 3 4 7 8
Ships 6 1 2 3 13 2

Hence, policemen patterns produce deep narrow graphs,
ships and houses have a flat and wide data structure. Some
graph structures produced by the ships and houses are
identical in structure such ashouse648 in figure 4 and
ship1034 in figure 5. There is no graph structure de-
rived from policemen images that is contained in the do-
main houses or ships.

Some patterns can be distinguished only through fea-
tures encoded in the labels. For example, when consid-
ering policemen, the location of the arm is not encoded in
the graph structure, but in the data label, while the graph
structure is not affected.

The maximum outdegree of all nodes in the data set is
6. The training (test) set contained3, 750 (3, 750) graphs
with a total of 29, 864 (29, 887) nodes. For the purpose
of testing the ability of the network to autonomously
organize the input structures according to their structural
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Figure 5: Artificially generated images of ships. Data la-
bels are not shown.

and content (i.e., data attached to nodes) features, 12
classes are defined. The property of these classes is such
that some classes can only be distinguished by considering
information provided through data labels. Other classes
require structural information in order to be distinguished.
A detailed description of the classes can be found in [2].

SOM-SD preparation. To evaluate the capacity of the
SOM-SD we train maps of different sizes from 20×10,
24×12, . . . , 60×30, and 90×45. Map initialization dif-
fers for the weights representing node label, where values
are uniformly randomized between the maximum and the
minimum value of the respective component in the training
data and weights referring to context, which are initialized
to uniformly in [−1, 0]. We also compare different weight-
ings of the labels against the context, i.e. settings ofµ1.
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Figure 6: Clustering of the 2-D positions data vectors (pixel
positions) of child vertices (immediate receptive field) rep-
resented by a single winner node. Symbols encode differ-
ent positions in the fan-out tree, i.e. different pathsp of
lengthlen(p) = 1.
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Figure 7: Clustering of winners for points shown in fig. 6
on the corresponding 60×30 map.

5 Results on the variance measures

Figures 6 and 7 illustrate the the importance of the path-
respecting computation of the variance measure for a single
exemplary node from a 60×30 trained map. It is clearly
visible that the SOM-SD encodes the context by clustering
winners for the predecessors respecting the path in the tree
(here the position in the fan-out tree) in label space. The
variance-based measures quantify this effect.

Figure 8 shows the development of the quantization error
Esom−sd, the simple contextual varianceC (as varnode),
the quality of the context encoding measured byCπ(1)
(as var0) for the immediate predecessors and byCπ(2) (as
var1) for pathsp of lengthlen(p) = 1, 2. We see that the
SOM-SD decreases the variance measures and the quanti-
zation error over training. All further results use 20 train-
ing iterations, i.e. 20 presentations of the full set of 3750
graphs in newly randomized order for each presentation.

In figure 9, the tradeoff from weighting the structural
component higher than the label is considered. We get the
best classification performance for most of the weight on
the structure, however, the quantization error is larger than
for a more balanced weighting of label and structure. On
the other hand, the variance measure decreases consistently
with the increase in classification performance and is there-
fore better suited to evaluate the map. This result motivates
to use for the last experiment a fairly large weight on the
structure (1−µ1 = 0.95) and to evaluate performance with
respect to the size of the map.

Figure 10 shows the respective results for maps of size
20×10, . . . , 60×30 for otherwise constant parameters and
1−µ1 = 0.95. While the quantization error is insignificant
to show superiority of larger maps, the variance measures
once more decrease consistently with the increase in clas-
sification performance.

6 Conclusion

We introduce several measures to quantify the success of
encoding the structural properties of input graphs clustered
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Figure 8: Development of error and variance measures
over training iterations for different90 × 45 maps with
µ1 = 0.01(left) andµ1 = 0.1. Clearly the structure re-
specting variance measures var0 for immediate and var1
for 2-nd order children are decreasing, while the simple re-
ceptive field variance (varnode) stays large. One training
iteration corresponds to a single presentation of all graphs
in randomized order.

 0

 100

 200

 300

 400

 500

 0.001  0.01  0.1  1
 0
 10
 20
 30
 40
 50
 60
 70
 80
 90
 100

Q
ua

nt
.-

E
rr

 ,V
ar

.-
M

ea
su

re

C
la

ss
ifi

ca
tio

n 
%

weight on label

weighting label vs. structure

Quantization Classification Variances

Figure 9: Quantization error, variance measure for imme-
diate children, and classification with respect to the weight-
ing of labels (µ1). All measures averaged over 10 runs on
90 × 45 maps.

with SOM-SD. We show that the quantization error alone is
an insufficient measure for structural encoding and a naive
approach directly using the previously introduced receptive
field variance like in [4, 9] for recursive SOMs also fails to
differentiate with respect to children positions in the fan-
out tree. Therefore we propose to generalize this approach
to structure respecting variance measures and demonstrate
on a SOM-SD benchmark dataset that these measures are
consistent in the sense that they decrease over training
and for larger maps. Further, if the comparison metric
imposes large weight on the structural encoding compo-
nents, the quantization error on the labels may increase
while the variance measure decreases. It is interesting that
this goes along with better classification performance on
the given dataset, which motivates to investigate in future
work whether an online-monitoring of the variances could
be useful to modify the SOM-SD training scheme, for in-
stance to introduce a schedule for changingµ1 adaptively.
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Figure 10: Evaluation of map size: The quantization error
is insignificant while the variance measures evaluated with
respect to paths of length 1 and 2 consistently decrease with
improving the classification performance.
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