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Abstract—  Self-Organizing Maps for Structures metric spaces and it is not so obvious how to generalize
(SOM-SD) are neural networks models capable of procesthem to structured domains. Up to now, the only way to
ing structured data, such as sequences and trees. The eeakluate the “quality” of a SOM-SD was through visual in-
uation of the encoding quality achieved by these maps capection of the mapping realized for selected input struc-
neither be measured exclusively by the quantization errtures.
as in the standard SOM, which fails to capture the struc- In this paper, we address this problem and propose new
tural aspects, nor by indices measuring topology presenviadices for measuring, in a quantitative way, how well
tion, because often there are no measures available for désructural features of the input data are preserved.
crete structures. We propose new indices for the evaluation
of encoding quality which are customized to the structural
nature of input data. These indices are used to evaluate e The SOM-SD framework
quality of SOM-SDs trained on a benchmark dataset intro-
duced earlier in [2]. We show that the proposed indicegon-sp is a SOM capable of processing structured input
capture relevant structural features of the tree encoding g, the form of a directed acyclic graih taken from a data
d|t|one_1l to the_statlstlcal featu_res ofthe training datetves g4t of input graphd™. Each vertexs of the graphT’ has
associated with the tree vertices. attached a data vector, which can be real or discrete valued.

Because the graph is assumed to be directed, for each ver-

. texw the set of child vertices is well defined and denoted by

1 Introduction ch[v]. SOM-SD can be understood as the recursive appli-

cation of a standard SOM where the input is properly coded
Self-Organizing Maps (SOMSs) [6] have been developetb take in consideration the data vectors together with the
with the aim to visualize high-dimensional data in few di-structural information summarized bj[v]. For SOM-SD,
mensions, usually a regular two-dimensional grid of nodes, network input vectoz,, represents the information of a
while preserving the most important topological and/overtexv € V(T') concatenating the data vectorand the
metric relationships of the high-dimensional data elementoordinates of the mapping, on the same network, of child
on the grid. The parameters which define the functionodesy,,, so thatz, = [v,y,,]. We consider only
implemented by a SOM are obtained by an unsuperviseédo-dimensional maps such thgt,,; contains for each
learning procedure. The evaluation of the “quality” of achild of v the two-dimensional map-coordinates of the win-
map is not an easy task, since the standard quantization eer node for that child. The vectays),|,; can be made con-
ror does not take into consideration how well the topologgtant in size if the maximum out-degree of any vertex in the
of the input data is preserved. For this reason, some medataset is known. Assuming that the maximum out-degree
sures of topology preservation have been proposed in tigeo, then for vertices with less tham children, padding
past, e.g. [1, 5, 8, 7]. with a default coordinate, typically the “impossible” ceor

Recently, a SOM based model, i.e. SOM-SD [2], capadinate (-1,-1), is applied. As a result, thearek = p + 20
ble of processing structured data, such as sequences afiensional vectors, whereis the dimension of the data
trees, has been proposed. Such varying size data strwector. The codebook vectora are of the same dimen-
tures occur in natural language processing, HTML docusion.
ment and structured text analysis, robotics, or cheminfor- In order to account for the coding of both vertex data
matics and bioinformatics. The evaluation of the “qualvector and structural information in the same input item,
ity” of SOM-SDs is even more difficult, since input data isthe winning neuron is selected by using a modified Eu-
structured. Of course, just using the quantization error ididean distance, i.er = argmin; ||(x, — m;)A|| where
not enough and the topology preservation measures meh-is ak x k dimensional diagonal matrix. Its diagonal ele-
tioned above are useless since they are defined on vectori@@nts)y; - - - Ay, are set tquy, all remaining diagonal ele-



ments are set tb— i1 The constant; weights the contri-
bution of the data vector component against the influence
the children’s coordinates representing the structufatin
mation Intuitively, setting large values far, focusses on
the data vectors but reduces the SOM-SD’s ability to rep
resent structural information and reduces the accurady wi
which information is passed on to parent nodes. Small
emphasise mapping precision according to structuralinfo
mation but neglect the importance of the information prot
vided by the data vectors. We will derive a new measur
which shows exactly this tradeoff quantitatively. See [2
for more details on SOM-SD.

Ligure 1. Representations of different mappings for trees
with 2D labels.v; represent the 2D weight vectors associ-
ated to neurons, while labels attached to tree’s vertioes ar
3 Evaluation measures represented by;. and are connected by directed arcs rep-
resenting the trees’ topology. The direction of the arcs is
It is very difficult to evaluate the ability of a map to encodg:nverted with respect to a standard representation fostree
relevant spatio-temporal relationships contained in the i in order to represent the fact that vertices are presented to
put trajectories. There are different issues that must he cothe map according to an inverted topological order. Arcs
sidered. First of all we would like to have a small quantiare annotated by numbers (either 1 or 2) representing the
zation error, i.e. we would like the weight vectors to retairPosition assigned to each child. The immediate receptive
all the statistical information about the data vector distr ~ field for neurorv, is R (0) = {v1,v2, vs, vs, 07}, i.€. the
tion. Moreover, we would like the map to preserve also thehildren of vertices for whichy, is the winner node. The
main temporal (or more in general, structural) features ¢foread of data (2-D positions) attached to vertices belong-
the trajectories, i.e., the “history” or “contextual” infaa-  ing to R, (0) is larger for the data shown in the left side box
tion contained in the trajectories (e.g. that a point in spadhan for data shown in the right side box, consequently the
is reached by a trajectory only passing across a specific supap encoding is better for the right hand side data.
space and following a specific direction). This means that
we expect that the same region of the input space is “cov-
ered by.severa_l neuron.s,ee}ch one sp_emallzed to reCOgngfﬁwple Contextual Error. In order to understand how
from which origin and direction the trajectory reaches tha] : L . .
: . . . : Structural information is codified, let us define tineme-
region. Of course, this ability should be obtained with ng,. L o o
; - s diate receptive field?;(0) of a neuron with index, i.e.
reduction of the quantization capability of the network. . . . .
: L all the child vertices of parents for which neurapis the
In this paper, we address this issue on the represeil: ..
tation side, i.e. we ask how a trajectory of a structured '
0bject_car_1 be represented such th_at both f:ont_e>_<tu_al in- Ri(0) = {ueT,T € Tlue chl], r(z,) = i}.
formation is preserved and quantization error is minimized
We can then define the immediate context as the set of
“predecessors” of inputs i®;(0) and, recursively the set

Quantization Error. If with r(:vv) we denote the index of of “predecessors“ of “predecessors" of |nputﬂr(0)
the winning neuron for input,,, v € V(T), the (squared)
guantization error for the standard SOM is defined as Ri(j)={veT, TeT|uecchp], ve Ri(j —1)}.

Esom = Z Z (T — Mypz,))* The definition of these sets is particularly useful, since,
given a neurom,;, we can look at all the inputs which are

j steps back with respect to inputs in tinemediate recep-

This way of computing the quantization error, however, intive fieldand check if they are spread or concentrated. In

cludes also the structural component introduced by the ithe first case, it means that the neuron is not able to codify

put encoding. We can avoid this contribution, when corthe history of the input, while in the last case it means that

sidering SOM-SD, by computing the quantization error aghe neuron is actually able to do it. An example of imme-
diate receptive field is given in Figure 1, assuming that the

Esom—sa = Z Z (v — M (x,))? training data is constituted by just two trees with root reode
Ter vev(T) vg andwvg. Then the immediate receptive field for neuron
n, is defined by the seR,(0) = {v1, va, vs,v6,v7}. The
wherem is the sub-vector obtained by selecting the first left part of the figure shows an immediate receptive field
components of the code vectot, i.e., the portion which for neuronn; which exhibits a larger spread than the one
refers to the input label. represented in the right side box. For a giverwe can

TeTvev(T)



vertex of the above defined set. In order to exemplify, let
consider the above case of complete binary trees. Then,
each (relative) path of lengftcan be described by a string
of length; from the alphabefi, r}, where the symbdlin-
dicates that the left child has been followed, and the symbol
r indicates that the right child has been followed. Thus, if
j = 2, we have the 4 possible pathis ir, i, rr. For
each input tred’, given a vertex, € T', we can now build
the following context vectofy(u, 2) = [vy, iy, Vs, Vrr),
wherewy; is the label attached at the vertexeached by
Figure 2: The spread of 2-D position data attached to vestarting fromu and following the patfil, and so on for the
tices belonging td?; (0) = {v1,v2, vs, v7} is much smaller other paths. Using this definition, we can define the follow-
for the data shown in the right side box than for data showifig sample variance:

in the left side box when considering children in the same

i . 1 2
position (either 1 or 2.) o2(i,j) = o Z (’Y(U»j) — V(%j)) ,

ucwin;

guantify the degree of encoded context of neungni.e. where(u, j) is the sample mean of(v, j) andwin; the

history, by computing the sample variance of the label dai& of vertices in the training set for which neurois the
over the datasef :

winner node.
2. . 1 g The problem with this definition is that it is not clear
o°(i,j) = IR:(j)] Z (u—u) what to do when the input trees are not all complete. In
ueRi(y) fact, in this case we are faced with the problem that going

backward from a vertex towards the frontier of the input
%ee, different paths may end earlier than others, thus ren-
ering impossible to produce a well formed vectou, j).
Here we suggest to proceed as follows. First of all, we
1 N compute the label variance on each single (relative) path,
C@j) = N Z a?(i, 7). then we take the expected value of this variance over paths
i of the same length. More formally, givenin;(p) be the

The above measure can be understood as a dirgé{?hsetmvtig'cszsr:]n rgzﬁgg:]v::ft?]éhgg;g'f;:é;i;lt'vz)
generalization of the temporal context measure defined f P p(u), P @by

sequences in [4, 9] to structures but in this simplicity i starting from any vertex ivin (p)) is defined as:

wherew is the sample mean (computed over(j)) of the
labels. Finally, we can average over all the neurons in
map to get a “global” evaluation of the map:

has a major drawback when considering structural data. _ 1
It is impossible to discriminate contexts where children pr (i, p) = W Z Up(u)-
occurring in the same position are concentrated while ! u€wini(p)

looking across different positions they are quite diffeére
(Fig. 2, right), from contexts where children occurrin
in the same position are spread around as well as when , 1

looking across different positions (Fig. 2, left). or(i,p) = [wing(p)|

g\Ne can now define the following sample variance:

. 2
Z (vp(u) - Mﬂ'(lﬂp))
u€win; (p)
Structure Respecting Contextual Error. In order to dis- and (;]qmpute its expected value over paths of the same
criminate the different contexts over structures, we neéangt J
to take into consideration the co-occurence of children of

20 2\ — o 2(s
the same vertex. This should be done considering both the EL(i,7) = Z ‘fl»N’ (4, p),
topology of the input structures and the label attached at p | len(p)=j
the vertices. First consider the special case that each iniere
structure is constituted by a fully complete structure, e.g P |win; (p)]
a complete binary tree. Denote byc path(T) a path 3:p > ten(a)=i lwini(q)|”

p from the set of possible pathesth(T') of the treeT. _ )

Then, given an input structure, it is easy to keep track dt9ain, we can average over all the neurons in a map to get
co-occurences by focusing on the set of vertices which céh global” evaluation:

be reached by a pathof lengthlen(p) = j starting from N

a specific vertex, and then building up a single vector ob- O (j) = 1 Zgz (i, 7).

tained by the concatenation of the labels attached at each N ; R
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Figure 3: Graph structure of two policemen (data labels are
not shown). Nodes are numbered to indicate which eleme'g

|tgure 4: Artificially generated houses and associated
they represent.

graph structure. Data labels are not shown. Nodes are num-
bered to indicate which element is represented.

Computation. An efficient computation of the variance

measure IS not trivial, because the number .Of po$5|b {fe scanned from bottom to top, and from left to right. The
paths within a tree grows exponentl_allywnh their maxiMa, o+ colored object found constitutes the root node. Ob-
length and the_measures also require to C(_)mpute _Va”anjgéts directly connected form the offsprings. Applied re-
for each node in the map separa’gely. But m_pra_ctlce, Ongursively, all objects are considered and a graph represen-
few of these paths actually occur in real applications and&ltion is obtained. Each node in the graph receives a two
is possible to exploit that each vertex of a tree contribute mensional label stating ther, y} coordinate of the cen-

to the variance with respect to one path of a given leng r of gravity of the correspohding object. Examples are
for a single winner. Given that all means and variances Cqﬂhstrated in figure 3, figure 4, and figure 5

be computed incrementally and recursively, we use the fol- The result is a d,ataset th,at provides directed acyclic
lowing strategy to determine all relevant quantities in twg raphs with the following proerties:

steps. First we determine for each vertex the correspon%— P g prop '
ing winner node in the (trained) SOM-SD map. Then, for

each vertex and up to a given depth, we determine all paths Outdegr.  Depth Num. nodes Num.
the vertex is part of and update the means and varianceQata set Max. Min Max Min Max | classes
for these paths and the respective winner incrementally b)ﬁg“‘;ir:e” 2 g g Z 171 g

. 1 . . -7 .T’Hou
moving to the parent and using the information which i$ Ships 6 1 5 3 13 5

the winning node for this parent. Only if a new type of
path or a new winner node is encountered, memory is al- Hence, policemen patterns produce deep narrow graphs,
located and the incremental computations are initializedhips and houses have a flat and wide data structure. Some
Thereby all computations can be performed by two sweeggaph structures produced by the ships and houses are
over all vertices, one for determining the winners, and onigentical in structure such dsouse648 in figure 4 and

for computing the variances. shi p1034 in figure 5. There is no graph structure de-
rived from policemen images that is contained in the do-
main houses or ships.

Some patterns can be distinguished only through fea-
tures encoded in the labels. For example, when consid-
For the experiments, we used the dataset given in [2]. kring policemen, the location of the arm is not encoded in
essence, the dataset is composed of labeled directed tve graph structure, but in the data label, while the graph
dered acylic graphs (DOAGS) extracted from images pratructure is not affected.
duced by means of a context free attributed plex gram- The maximum outdegree of all nodes in the data set is
mar. The dataset consists of visual patterns and associa@dThe training (test) set contain8d750 (3, 750) graphs
graph structures from three different domains. A number afith a total of29, 864 (29, 887) nodes. For the purpose
classes are defined for each domain. Structural represené-testing the ability of the network to autonomously
tions are obtained by a scan line algorithm where imagesganize the input structures according to their struttura

4 Data and experimental setup

Proceedings of the 6th International Workshop on Self-Organizing Maps (WSOM 2007)
Published by the Neuroinformatics Group, Bielefeld University, Germany, ISBN 978-3-00-022473-7
All contributions to WSOM 2007 are available online at: http://biecoll.ub.uni-bielefeld.de
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Figure 5: Artificially generated images of ships. Data lafigure 7: Clustering of winners for points shown in fig. 6
bels are not shown. on the corresponding 60 map.

5 Results on the variance measures

and content (i.e., data attached to nodes) features, Eyyres 6 and 7 illustrate the the importance of the path-
classes are defined. The property of these classes is sYgBpecting computation of the variance measure for a single
that some classes can only be distinguished by Cons'de”BQempIary node from a 6680 trained map. It is clearly
information provided through data labels. Other classgggip|e that the SOM-SD encodes the context by clustering
require structural information in order to be distinguishe \inners for the predecessors respecting the path in the tree
A detailed description of the classes can be found in [2]. (here the position in the fan-out tree) in label space. The
variance-based measures quantify this effect.
Figure 8 shows the development of the quantization error

SOM-SD preparation. To evaluate the capacity of the Esom—sd, the simple contextual variance (as varnode),
SOM-SD we train maps of different sizes from>200, the quality of the context encoding measured @y(1)
24x12, ..., 60<30, and 9 45. Map initialization dif- (&s var0) for the immediate predecessors an@’pf2) (as

fers for the weights representing node label, where valug@rl) for pathg of lengthlen(p) = 1,2. We see that the

are uniformly randomized between the maximum and theOM-SD decreases the variance measures and the quanti-
minimum value of the respective componentin the trainingation error over training. All further results use 20 train
data and weights referring to context, which are initialize Ing iterations, i.e. 20 presentations of the full set of 3750
to uniformly in[—1, 0]. We also compare different weight- graphs in newly randomized order for each presentation.

ings of the labels against the context, i.e. settingsof In figure 9, the tradeoff from weighting the structural
component higher than the label is considered. We get the

best classification performance for most of the weight on
the structure, however, the quantization error is larganth

240 ‘ ‘ ‘ ‘ ‘ ‘ for a more balanced weighting of label and structure. On
220 ¢ eels o L] the other hand, the variance measure decreases congistentl
200 | i T R 1 with the increase in classification performance and is there
180 | ‘oo %%: ooy PR fore better suited to evaluate the map. This result motivate
160 AT ad e 1 to use for the last experiment a fairly large weight on the
140 | C R ’ b e ] structure { — 1 = 0.95) and to evaluate performance with
200 .- *,( I ZESU respect to the size of the map. _ .
100 t BFE Rl TE N Figure 10 shows the respective results for maps of size
80 ‘ ‘ ‘ ‘ ‘ 20 x 10,...,60 x 30 for otherwise constant parameters and
0 50 100 150 200 250 300 350 1—p1 = 0.95. While the quantization error is insignificant

to show superiority of larger maps, the variance measures

) ) - ~once more decrease consistently with the increase in clas-
Figure 6: Clustering of the 2-D positions data vectors (bixsfication performance.

positions) of child vertices (immediate receptive field)-re

resented by a single winner node. Symbols encode differ-

ent positions in the fan-out tree, i.e. different pathef 6 Conclusion
lengthlen(p) = 1.

po = pl - p2< p3c p4-

We introduce several measures to quantify the success of
encoding the structural properties of input graphs clester
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over training iterations for differe®0 x 45 maps with 8 100 fF~— 1 10
p1 = 0.01(left) andu; = 0.1. Clearly the structure re- © 02'0 24 28 32 36 40 44 48 52 56 éoo
specting variance measures varO for immediate and varl .
. . . . map size 20x10,...,60x30
for 2-nd order children are decreasing, while the simple re-
ceptive field variance (varnode) stays large. One trainingLabel error —  Class. < len(p)=1 --- len(p)=2 -
iteration corresponds to a single presentation of all gsaph
in randomized order. Figure 10: Evaluation of map size: The quantization error

is insignificant while the variance measures evaluated with
respect to paths of length 1 and 2 consistently decrease with

weighting label vs. structure improving the classification performance.
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with SOM-SD. We show that the quantization error alone i
an insufficient measure for structural encoding and a naive
approach directly using the previously introduced reeepti
field variance like in [4, 9] for recursive SOMs also fails to
differentiate with respect to children positions in the-fan
out tree. Therefore we propose to generalize this approa
to structure respecting variance measures and demonstrate
on a SOM-SD benchmark dataset that these measures
consistent in the sense that they decrease over trainiﬂée
and for larger maps. Further, if the comparison metric
imposes large weight on the structural encoding compao-
nents, the quantization error on the labels may increa‘i
while the variance measure decreases. It is interestirig tha
this goes along with better classification performance on
the given dataset, which motivates to investigate in futur
work whether an online-monitoring of the variances coul
be useful to modify the SOM-SD training scheme, for in-
stance to introduce a schedule for changingdaptively.



