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Abstract—  Failure management in process industrfaults is one specific goal in this project, and ou
has difficult tasks. Decision support in controbmes of jnitial studies show that for example water or stea
nuclear power plants is needed. A prototype tha&s Us|eaks in the primary circuit are potential scengitio
Self-Organizing Map (SOM) ~method is undefhangie with this approach, because they often

development in an industrial project. This papes f@us o osq slowly and therefore give more time to
on failure detection and separation. A literatuuevey react

outlines the state-of-the-art and reflects our wtud e
related works. Different SOM visualizations are dise !N @ddition it is useful for the experts to undanst

Failure management scenarios are carried out ¥@ous phenomena in the process. Regular isolation
experiment the methodology and the Man-Machingalve experiments carried out in the nuclear power
Interface  (MMI). U-matrix trajectory analysis andplants are one example where there seems to exist
guantization error are discussed more in detaile Thunknown factors. Also instrument calibration
experiments show the usefulness of the chosen agipro problems in nuclear plants can be revealed by data
Next step will be to add more practical views b)‘omalysis methodologies.

analyzing real and simulated industrial data witte t 14 Gisplay and ennoble information for the operator
control room tool and by feedback from the end siser or expert user with visualizations and possible
operational guidance is another problem area tieat w
are looking for possible solutions. The controlmmso

of nuclear power plants are just going through
Jnodernization phase, which gives us also a lot of

task. Especially in certain safety critical apptieas challenges and new possibilities. For instance, we
the responsibilities and requirements for the be@f¢ !00King for new contents for the new big
possible planning are extremely high. Our induktridnonitoring screens that will appear into the modern
application example is a Boiling Water Reactof©ntrol rooms. . . .
(BWR) type nuclear power plant. The operator in thgn€ research method used in the project is

control room should be provided with appropriat® ©totyPing and using the prototype tool as a lohd
decision support [1]. test bench for different methodologies and

%mbinations of them. The methodologies are such

1 Introduction

Failure management in process industry is a diffic

A prototype of a decision support tool combinin : - .
neural methodologies and  knowledge-bas data preprocessing, data mining and analysis. We

methodologies has been under development {50 develop new visualization tools. In this paper
several years [2]. This tool utilizing Self-Organg W€ have focus on literature survey and failure
Map (SOM) [3] in data analysis has been built and §eparat|on with SOM methods,_ su_ch as U-matrix
first applied in an industrial project in co-opévat U/€ctory analysis and quantization error. The
with Teollisuuden Voima Oy Olkiluoto nuclear“terature_ Survey _|_ncludes also a “tﬂef wu_jer
power plant. The tool will be evaluated by thd€rSPECtive in decision support than what is writte
control room operators controlling the plant of the title of this article.

experts and analysts trying to understand and expla

different phenomena in the process.

The basic problems discussed in this paper are

failure detection and separation. Early detectibn o



i Many operator support system prototypes for
2 Literature Survey nuclear power plants have been developed by OECD
There has been a lot of effort to do failure dépect Halden Reactor Project together with its co-
with complex data analysis methods. Process fa@Peration institutes all over the world. One exampl
detection is a widely studied area. In most cas€é those is CAMS [24], which consists of many
traditional control processes and event based @ontintegrated parts responsible for different taskshs
has been used instead of decision support systemsaS Signal validation, tracking simulator, predietiv
Decision support systems have enormous amount®fulator, —strategy generator, critical function
applications.  Everything  from  agriculturemonitoring and Man-Machine Interface (MMI). The
fertilization, customer segmentation, investing anAMS is also a decision support system prototype
marketing campaigns, traffic organization, etc.chedOr severe nuclear accidents. _
decision support [4,5,6,7,8]. A lot of fa”ure_C_nuca}I part of a DSS is MMI anq asso_uated
detection research has been done in the contextVéjualizations. Most of reviewed articles did not
medical diagnostic decision support systems [9,10]:descr|be or evaluate DSS visualizations in detil. .
Three classes of articles were found in the liteeat 1S @nother research problem more associated with
survey. They are referred as type |, type Il aqmbty PSychology what is the best way to visualize preces
. Type | are articles that describe how a nednformation to minimize human error [25]. .
method or model can be utilized for decisiodYPe !l articles describe a process how DSS is
support. A lot of methods or models are used igonstructed, models selected or DSS validated. A
failure detection. One of the most used ones ocess for DSS construction is at least as complex
multilayer perception (MLP) [9,10]. In addition@S construction of any information system.
fuzzy-rule inference and decision trees are usdgformation system building starts with specificati
[11,12,13]. But the scale is wide and everythin@f requirements [26]. In DSS construction thishie t
from derivations of PCA to traditional rule basedn0st demanding phase. High-level requirements can
inference was found [14,15,16]. be used to choose the most suitable model, method,
From previous works about using U-matrix folSer interface and visualizations.
decision support [17] should be mentioned. 1A interesting res_earch question is hgw to choose a
referred work bigger map size and smaller data no§eedel for a decision support application. In a gtud
relation is used. Cluster borders are easy toyntif [9] there was a comparison of different models and
this method. the simplest model with sufficient high classifioat
Type Il are articles that describe a constrainedfcuracy was preferred and chosen. When the cost
decision support system prototype or tool for & one type of classification error is much higher
specific application. Different frameworks arethan another, better quality decision support can b
presented. Implementations of utility theory ar@chieved by choosing training sets that minimize
common. One example is Web-HIPRE, a Web bas@ly the high cost classification error. This sitoa
decision analysis tool [18]. Reviewed DecisiofPccurs in medical diagnostics. The modified tragnin
Support System (DSS) frameworks that are based $ffs were chosen by utilizing topological ordering
utility theory did not specify how features used aBroperty of SOM. _ o
utility attributes are calculated [19]. Validation qnd e_valuatl_o_n of DSS is important
A lot of articles describe DSS prototypes for pssce because failure in decision support can be very
optimization rather than for failure detection [20], €xpensive [16]. A DSS evaluation scheme for
A few exceptions are RODOS and ComPASSXODOS is described in [27]. In [28] there is a
RODOS (Real-time On-line DecisiOn Supporfomparison of d|ff_erent DS_S software suites and
system) is a decision support system for nucleRfocess for choosing the right one. In rule-based
emergency management. It is a large scale DSS R)stem the compl_e_teness and consistency of rule
providing support before, during and after aiase should be verified [29].
accident. RODOS is a distributed project and
includes up to 40 institutes from 20 countries [221c;_,P . . .
ComPASS is a DSS for manufacturing machine to Prototype visualizations
fault diagnosis. It is based on

multi-agen .
architecture [23]. [‘)ERSI prototype [2] is a Matlab software program

built on top of Matlab extension SOMToolbox [30].
It is a decision support framework, where



application specific knowledge can be fed in by afihe scenarios presented in this paper are simulated
expert user interface. DERSI includes a simple rulgith the Simulink process modeData from the
base for example scenarios. A process model ofsemulation is used both as training data and tatt.d
simplified boiling water nuclear power plant buiit Scenario test data can be chosen from “Process Step
Matlab Simulink environment also exists. DERSMatrices” list in Frame 3 of Figure 1. In all SOM
Man-Machine Interface (MMI) including different maps in this paper 11 process variables are used.
decision support visualizations is seen in Figure 1

The window is divided into eight frames.
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Figure 1: DERSI Man-Machine Interface (MMI). The Mkas eight different frames that are numberedénfigure.

The failure management scenario in Figure 1 ighich consists of Graphical User Interface (GUI)
analyzed in detail in [2]. The problem is arncontrol components.
admission valve that is stuck in closed positiome T Variable correlations can be clearly seen from
rule base is reasoning several proposals with ngryicomponent plane SOM maps. By comparing failure
priorities to help the operator, see Frame 1 inieig SOM maps to normal data SOM maps changes in
1. Important aid is got also from the graphicabariable correlations may reveal the problem in the
visualizations of the control room tool. process. In this scenario in Figure 1 correlatién o
In addition to normal time series curves severdlirbine pressures (Frame 7) turn into reverse
SOM based visualizations are realized in DERStorrelation in the failure (Frame 5).
The time series curves are normally seen in FrameT¥he behavior of the trajectory in the U-matrix is
but in Figure 1 other visualization has replacedlear visual indication of a failure, see Figure 1
them. These changes are operated from FrameF@me 2. The trajectory moves to the failure area
when the scenario progresses.



Quantization error both in component levels (Framesamples). Map shapes are defined by data
6 and 8) and especially in U-matrix (Frame 2) idistribution shape in 2D PCA projection of the
another very clear visual indication of a failuseg teaching data. Only exceptions are component plane
Figure 1. Here the quantization error is increasing SOM maps that use predefined topology and map
the failure scenario, but the peaks caused by tkze. The reason for this is to keep the outlook of
model initial transient makes the picture somewh&UI as static as possible.

difficult to read and interpret. Because the U-imatr

SOM has been taught with both normal state data . .

and fault state data, the quantization error alytual4 Failure separation

first increases and then decreases.

The U-matrix is built from SOM, which is taught byQuantization error is a clear indicator of a faglun
data from all process states. Data matrices frofiany cases in fault detection. For instance in leak
separate process states are combined to one laig @@pnarios the quantization error increases ratwr f
matrix that is taught to this SOM. The U-matrixvhen the leak begins to cause remarkable changes in
trajectory is drawn to this SOM from the test data. the process dynamics. In some cases the
Three or four different kind of units are in usetfiis duantization error can be used even for failure
application: U-matrix SOM unit, unit with SOMs for separation, but usually other methods are required
automatic state identification, unit with componenfor support. In this chapter we concentrate inufail
plane SOMs from teaching data, and unit wit§eparation with U-matrix trajectories.

component plane SOM maps from input test dati) failure detection with U-matrix the trajectory

The component plane SOM maps from teaching dagéossing cluster borders is one indication of failu
and test data are used in variable correlatidgifferent SOM’s taught with different process state

visualization. data sets are used for classifying fault statee Th

In this scenario fault states are shown as cleBfocess state is determined to correspond to the
clusters in the U-matrix, but in another scenarig i SOM with smallest quantization error.

possible that fault state variable values grow auith Five different failure scenarios are experimented
bound and a distinct cluster is not formed in the Wvith the Simulink process model. U-matrix with
matrix. Quantization error and U-matrix trajectoryirajectories for normal data and each failure séena
analysis are analyzed more in detail and discuss@t® seen in Figure 2. In these scenarios the
more in the next section. trajectories move into separate areas in each
Process state and progress visualization [31]sis alscenario, and therefore the separation of thesescas
implemented in DERSI MMI, see Frame 4 in Figurés rather clear. This is no proof that it would be
1. This visualization reveals the progress of thiglways the case. When separation comes more
scenario by an increasing ramp. A leak scenario #hfficult, also other methodologies and combinasion
Olkiluoto training simulator in analyzed with thisof various methodologies need to be taken in use.
method in [31]. Appropriate feature selection and preprocessing is
In Frame 4 there are also quantization errors frofgcessary for successful failure separation.

separate SOM state classifier sensors. Every senbbrthe first U-matrix the data is from the normal
is taught with different process state datddrocess state, see Figure 2a. In the second Uxmatri
Quantization error of sensor 4 is low compared féere is a data of a leakage between reactor and
quantization errors of other sensors, althouglthall Preheater. The water level of the reactor corertsegi
sensor time series have high peaks on the left sife decrease and the reactor temperature begins to
because of the model initial transient. increase. The U-matrix trajectory in Figure 2b
The frames 6 and 8 show components of distangeoves into theFault 1 area. (The fault areas are
vector from the current process variable vector {@beled in the Figure 1 in the previous section).
corresponding BMUs in the process state SONM the third U-matrix the data is from a leakagatth
(Frame 6) and chosen sensor SOM (Frame 8). Thappears between one turbine and condenser.
are visualized as bar charts. Bar charts show whiEliessure drops in the corresponding section and the
variables deviate from corresponding BMU values. temperature increases. The trajectory moves irgo th
All SOMs used in the prototype are constructeffault 2area in this scenario, see Figure 2c.

using SOMToolbox with default settings. They usén the fourth U-matrix the admission valve
hexagon grid and map unit amount is definedccidentally closes. The pressure in that turbine
automatically (approximately 10% of teachingranch increases. The trajectory moves into the



Fault 3 area in Figure 2d. This is the same scenarid-matrix were for marketing or investment
that is seen in Figure 1 in the previous section. decisions [5,6].

DERSI does not use utility theory for decision
support. It seems that utility theory is more duliga
for isolated decision situation with limited amowrfit
alternatives rather than real-time decision support
with  possibly unclear connection between
recommendations and process goals.

In further development of the prototype feedback
from an industrial partner will be utilized. The
feedback will be provided by a potential end user.
Real process data from the Olkiluoto nuclear power
plant and training simulator is also availableisit
currently under study whether this data can be used
for building a DERSI demo scenarios or decision
support models.

6 Discussion

The strength of SOM is topological ordering of
multidimensional space and projection to lower
amount of dimensions. Visual inspection of the
neighborhood of state U-matrix trajectory head
reveals process states that are more likely iméae
future than states far from the trajectory headhe®t
classifier than SOM could have been used in the
Figure 2: U-matrix with traje_ctories for differefdilure sensors, but SOM was used for its ability to do
scenarios. visual correlation hunting. Visual correlation

In the fifth U-matrix there is a leakage in the lbog hunting is slow and in future it could be betteidtn
system. This causes increasing temperatures neardgjomatic correlation handling by interpreting SOM

in the process. The trajectory in Figure 2e moveé®mponent planes as vectors and calculating
into the Fault 4 area. The data of the fifth failuredistances between these vectors. Correlations can

scenario, which is a disturbance in the react@so be detected with some other methods than

power, is not visualized in this paper. SOM.

This example shows that with U-matrix trajectorieé\n interesting question is if SOM based fault
it is possible to separate various failures in mpseparation gives additional value in safety-critica
cases with a limited number of states. The castis wPecision Support Systems (DSS). A DSS can also

the real industrial data are more complicated arfdil and a safety-critical process operator has to
more difficult to handle. evaluate if he (or she) believes to the

recommendations of a DSS or not. The operator
needs to understand why a DSS worked like it did.
5 Prototype Analysis Simple rules are easy but a neural network like SOM
is essentially a black box and it is difficult ftre
DERSI has three essential parts, simple rule-basegerator to understand why the network gave a
inference engine, SOM of all states and set apecific result.
classification SOMs for every state. Actually many of these SOM based representations
Rule-based inference has been common in DSS Hdre difficult for the operators. The operators will
but no other system was found that uses SOM asieed special training to be able to adopt the
classifier and SOM quantization error as a featuennobled information in this form. We need to be
for rule-based inference. Although some studiegitical in what representations are possible ® ins
were found that integrate other neural network$ witvarious contexts. A special challenge is to defiree
a rule base [32]. Most of decision support with SOM




contents in the big screens of forthcoming modefd] M. Sirola, G. Lampi, J. Parviainen. "SOM based
control rooms in nuclear power plants. decision  support in  failure  management”.
We have also made some tests with the BWR International Scientific Journal of Computingol. 4,
training simulator data. Unfortunately we met Witg Issue 3, pp. 124-130, 2005. .

some obstacles that made it impossible to repoR Iégléohonen. The self-organizing mapSpringet
those tests in this paper. The state identificati | '

- P. Nuthall, “Case studies of the interactiomween
seems to work also with that data, but DERSI" f5m profitability and the use of a farm computer.”

prototype needs some further development to be computers and Electronics in Agricultyrgol. 42,
capable for analyzing thoroughly real industriaiada pp. 19-30, 2004.

We try to make the framework as flexible a$5] K. Kiviluoto, “Predicting Bankruptcies with th8elf-
possible to be able to handle all kind of datahie t Organizing Map”Neurocomputingyol. 21, pp. 191-
future. 201, 1998.

DERSI prototype development is now in a phas{@] T. V|rtaner_1, “Self-Organlzmg Maps.ln Custo_me_r
where feedback from the industrial users will give aegmer_‘ttat'of”T'Maﬁterls Thebs's t(':'””'sfhé Helslnk'
the next guidelines. Various visualizations haverbe niversity of Technologyl-aboratory of Computer

- . . . and Information Science, 2006.
examined more in somewhat academic basis, and WF M. Both. "Development of a Long-Term Strategy f

next step is to gnlighten more practic_al viewsﬂuy t the Moscow Urban Transport Systenit, [8], pp.

end users. Failure management with quantization 2g4-211.

error and U-matrix trajectory analysis have alreadg] D. Baier, R. Decker, L. Schmidt-Thieme (edifors
given hints how to proceed into that direction. "Data Analysis and Decision Support",

Variable correlations and changes in them read from Springey 2005.

the component plane SOM maps is another simill] D. West, V. West, “Model selection for a medica
example. diagno_stic deci’:sior_]_s_upport system: a brea_st_ cancer
In the literature survey it was easy to find detection case”Atrtificial Intelligence in Medicine,
information about different methods but difficudt t Vol. 20, pp. 183-204, 2000.

. . X . . 10]H. Yan, Y. Jiang, J. Zhenge, C. Pengc, Q. L,
find information about implementations of read); multilayer perceptron-based medical decision suppor

DSSs. One reason is that many of them are g gtem for heart disease diagnosEXpert Systems
commercial products and the manufacturers do not \ith ApplicationsVol. 30, pp. 272-281, 2006.

want to reveal details to possible competitors. [11] A. Stasis, E. Loukis, S. Pavlopoulos, D. Kauiss,
“Using Decision Tree Algorithms as a Basis for a
Heart Sound Diagnosis Decision Support System”.

7 Summary Proceedings of the™Annual IEEE Conference on
Information Technology Applications in Biomedicine,

A SOM based decision support approach applied in UK, 2003. _ )

nuclear power plant control room environment hdd2lJ. Pedro, F. Burstein, A. Sharp, “A case-basedy

been presented. Literature has been surveyed to Multicriteria decision support model for tropical

summarize the state-of-the-art, and to reflect our CYc'oné forecasting’. European Journal of

. Operational Research/ol. 160, pp. 308-324, 2005.
approach to related studies. A prototype has be[al@]

> > - C. Tran, L. Jain, A. Abraham, “Adaptation of
developed to test the ideas in practice. The p@ier” “y\amdani fuzzy inference system using neuro -

the prototype visualizations, and failure detection genetic approach for tactical air combat decision
and separation has been shown with example support system”5th Australian Joint Conference on
scenarios. The methods are shown to be useful by Atrtificial Intelligence (AI'02) Australia, LNAI 255
practical examples. Our next step is to analyze the Springer Verlag, Germanyp. 672-679, 2002.
industrial data more in detail. As conclusion thél4]A. Perera, N. Papamichail, N. Barsan, U. Weinga

failure separation with SOM works with tested data Marco, “On-line event detection by recursive
dynamic principal component analysis and gas sensor

sets. arrays under drift conditions’Proceedings of IEEE
Sensors conferenc¥ol. 2, pp. 860-865, 2003.
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