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Abstract—    Failure management in process industry 

has difficult tasks. Decision support in control rooms of 
nuclear power plants is needed. A prototype that uses 
Self-Organizing Map (SOM) method is under 
development in an industrial project. This paper has focus 
on failure detection and separation. A literature survey 
outlines the state-of-the-art and reflects our study to 
related works. Different SOM visualizations are used. 
Failure management scenarios are carried out to 
experiment the methodology and the Man-Machine 
Interface (MMI). U-matrix trajectory analysis and 
quantization error are discussed more in detail. The 
experiments show the usefulness of the chosen approach. 
Next step will be to add more practical views by 
analyzing real and simulated industrial data with the 
control room tool and by feedback from the end users. 

1 Introduction 

Failure management in process industry is a difficult 
task. Especially in certain safety critical applications 
the responsibilities and requirements for the best 
possible planning are extremely high. Our industrial 
application example is a Boiling Water Reactor 
(BWR) type nuclear power plant. The operator in the 
control room should be provided with appropriate 
decision support [1]. 
A prototype of a decision support tool combining 
neural methodologies and knowledge-based 
methodologies has been under development for 
several years [2]. This tool utilizing Self-Organizing 
Map (SOM) [3] in data analysis has been built and is 
first applied in an industrial project in co-operation 
with Teollisuuden Voima Oy Olkiluoto nuclear 
power plant. The tool will be evaluated by the 
control room operators controlling the plant or 
experts and analysts trying to understand and explain 
different phenomena in the process. 
The basic problems discussed in this paper are 
failure detection and separation. Early detection of 

faults is one specific goal in this project, and our 
initial studies show that for example water or steam 
leaks in the primary circuit are potential scenarios to 
handle with this approach, because they often 
progress slowly and therefore give more time to 
react. 
In addition it is useful for the experts to understand 
various phenomena in the process. Regular isolation 
valve experiments carried out in the nuclear power 
plants are one example where there seems to exist 
unknown factors. Also instrument calibration 
problems in nuclear plants can be revealed by data 
analysis methodologies. 
To display and ennoble information for the operator 
or expert user with visualizations and possible 
operational guidance is another problem area that we 
are looking for possible solutions. The control rooms 
of nuclear power plants are just going through 
modernization phase, which gives us also a lot of 
challenges and new possibilities. For instance, we 
are looking for new contents for the new big 
monitoring screens that will appear into the modern 
control rooms.  
One research method used in the project is 
prototyping and using the prototype tool as a kind of 
test bench for different methodologies and 
combinations of them. The methodologies are such 
as data preprocessing, data mining and analysis. We 
also develop new visualization tools. In this paper 
we have focus on literature survey and failure 
separation with SOM methods, such as U-matrix 
trajectory analysis and quantization error. The 
literature survey includes also a little wider 
perspective in decision support than what is written 
in the title of this article. 



2 Literature survey 

There has been a lot of effort to do failure detection 
with complex data analysis methods. Process fault 
detection is a widely studied area. In most cases 
traditional control processes and event based control 
has been used instead of decision support systems.  
Decision support systems have enormous amount of 
applications. Everything from agriculture 
fertilization, customer segmentation, investing and 
marketing campaigns, traffic organization, etc. need 
decision support [4,5,6,7,8]. A lot of failure-
detection research has been done in the context of 
medical diagnostic decision support systems [9,10].  
Three classes of articles were found in the literature 
survey. They are referred as type I, type II and type 
III. Type I are articles that describe how a new 
method or model can be utilized for decision 
support. A lot of methods or models are used in 
failure detection. One of the most used ones is 
multilayer perception (MLP) [9,10]. In addition 
fuzzy-rule inference and decision trees are used 
[11,12,13]. But the scale is wide and everything 
from derivations of PCA to traditional rule based 
inference was found [14,15,16]. 
From previous works about using U-matrix for 
decision support [17] should be mentioned. In 
referred work bigger map size and smaller data node 
relation is used. Cluster borders are easy to notify in 
this method. 
Type II are articles that describe a constrained 
decision support system prototype or tool for a 
specific application. Different frameworks are 
presented. Implementations of utility theory are 
common. One example is Web-HIPRE, a Web based 
decision analysis tool [18]. Reviewed Decision 
Support System (DSS) frameworks that are based on 
utility theory did not specify how features used as 
utility attributes are calculated [19].  
A lot of articles describe DSS prototypes for process 
optimization rather than for failure detection [20,21]. 
A few exceptions are RODOS and ComPASS. 
RODOS (Real-time On-line DecisiOn Support 
system) is a decision support system for nuclear 
emergency management. It is a large scale DSS for 
providing support before, during and after an 
accident. RODOS is a distributed project and 
includes up to 40 institutes from 20 countries [22]. 
ComPASS is a DSS for manufacturing machine tool 
fault diagnosis. It is based on multi-agent 
architecture [23].  

Many operator support system prototypes for 
nuclear power plants have been developed by OECD 
Halden Reactor Project together with its co-
operation institutes all over the world. One example 
of those is CAMS [24], which consists of many 
integrated parts responsible for different tasks, such 
as signal validation, tracking simulator, predictive 
simulator, strategy generator, critical function 
monitoring and Man-Machine Interface (MMI). The 
CAMS is also a decision support system prototype 
for severe nuclear accidents. 
Critical part of a DSS is MMI and associated 
visualizations. Most of reviewed articles did not 
describe or evaluate DSS visualizations in detail. It 
is another research problem more associated with 
psychology what is the best way to visualize process 
information to minimize human error [25]. 
Type III articles describe a process how DSS is 
constructed, models selected or DSS validated.  A 
process for DSS construction is at least as complex 
as construction of any information system. 
Information system building starts with specification 
of requirements [26]. In DSS construction this is the 
most demanding phase. High-level requirements can 
be used to choose the most suitable model, method, 
user interface and visualizations.  
An interesting research question is how to choose a 
model for a decision support application. In a study 
[9] there was a comparison of different models and 
the simplest model with sufficient high classification 
accuracy was preferred and chosen. When the cost 
of one type of classification error is much higher 
than another, better quality decision support can be 
achieved by choosing training sets that minimize 
only the high cost classification error. This situation 
occurs in medical diagnostics. The modified training 
sets were chosen by utilizing topological ordering 
property of SOM. 
Validation and evaluation of DSS is important 
because failure in decision support can be very 
expensive [16]. A DSS evaluation scheme for 
RODOS is described in [27]. In [28] there is a 
comparison of different DSS software suites and 
process for choosing the right one. In rule-based 
system the completeness and consistency of rule 
base should be verified [29]. 

3 Prototype visualizations 

DERSI prototype [2] is a Matlab software program 
built on top of Matlab extension SOMToolbox [30]. 
It is a decision support framework, where 
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application specific knowledge can be fed in by an 
expert user interface. DERSI includes a simple rule 
base for example scenarios. A process model of a 
simplified boiling water nuclear power plant built in 
Matlab Simulink environment also exists. DERSI 
Man-Machine Interface (MMI) including different 
decision support visualizations is seen in Figure 1. 
The window is divided into eight frames. 

The scenarios presented in this paper are simulated 
with the Simulink process model. Data from the 
simulation is used both as training data and test data. 
Scenario test data can be chosen from “Process Step 
Matrices” list in Frame 3 of Figure 1. In all SOM 
maps in this paper 11 process variables are used. 

 

 
Figure 1: DERSI Man-Machine Interface (MMI). The MMI has eight different frames that are numbered in the figure. 

The failure management scenario in Figure 1 is 
analyzed in detail in [2]. The problem is an 
admission valve that is stuck in closed position. The 
rule base is reasoning several proposals with varying 
priorities to help the operator, see Frame 1 in Figure 
1. Important aid is got also from the graphical 
visualizations of the control room tool. 
In addition to normal time series curves several 
SOM based visualizations are realized in DERSI. 
The time series curves are normally seen in Frame 4, 
but in Figure 1 other visualization has replaced 
them. These changes are operated from Frame 3 

which consists of Graphical User Interface (GUI) 
control components. 
Variable correlations can be clearly seen from 
component plane SOM maps. By comparing failure 
SOM maps to normal data SOM maps changes in 
variable correlations may reveal the problem in the 
process. In this scenario in Figure 1 correlation of 
turbine pressures (Frame 7) turn into reverse 
correlation in the failure (Frame 5). 
The behavior of the trajectory in the U-matrix is 
clear visual indication of a failure, see Figure 1 
Frame 2. The trajectory moves to the failure area 
when the scenario progresses. 

3



Quantization error both in component levels (Frames 
6 and 8) and especially in U-matrix (Frame 2) is 
another very clear visual indication of a failure, see 
Figure 1. Here the quantization error is increasing in 
the failure scenario, but the peaks caused by the 
model initial transient makes the picture somewhat 
difficult to read and interpret. Because the U-matrix 
SOM has been taught with both normal state data 
and fault state data, the quantization error actually 
first increases and then decreases. 
The U-matrix is built from SOM, which is taught by 
data from all process states. Data matrices from 
separate process states are combined to one big data 
matrix that is taught to this SOM. The U-matrix 
trajectory is drawn to this SOM from the test data. 
Three or four different kind of units are in use in this 
application: U-matrix SOM unit, unit with SOMs for 
automatic state identification, unit with component 
plane SOMs from teaching data, and unit with 
component plane SOM maps from input test data. 
The component plane SOM maps from teaching data 
and test data are used in variable correlation 
visualization. 
In this scenario fault states are shown as clear 
clusters in the U-matrix, but in another scenario it is 
possible that fault state variable values grow without 
bound and a distinct cluster is not formed in the U-
matrix. Quantization error and U-matrix trajectory 
analysis are analyzed more in detail and discussed 
more in the next section. 
Process state and progress visualization [31] is also 
implemented in DERSI MMI, see Frame 4 in Figure 
1. This visualization reveals the progress of this 
scenario by an increasing ramp. A leak scenario in 
Olkiluoto training simulator in analyzed with this 
method in [31]. 
In Frame 4 there are also quantization errors from 
separate SOM state classifier sensors. Every sensor 
is taught with different process state data.  
Quantization error of sensor 4 is low compared to 
quantization errors of other sensors, although all the 
sensor time series have high peaks on the left side 
because of the model initial transient.  
The frames 6 and 8 show components of distance 
vector from the current process variable vector to 
corresponding BMUs in the process state SOM 
(Frame 6) and chosen sensor SOM (Frame 8). They 
are visualized as bar charts. Bar charts show which 
variables deviate from corresponding BMU values. 
All SOMs used in the prototype are constructed 
using SOMToolbox with default settings. They use 
hexagon grid and map unit amount is defined 
automatically (approximately 10% of teaching 

samples). Map shapes are defined by data 
distribution shape in 2D PCA projection of the 
teaching data. Only exceptions are component plane 
SOM maps that use predefined topology and map 
size. The reason for this is to keep the outlook of 
GUI as static as possible. 

4 Failure separation 

Quantization error is a clear indicator of a failure in 
many cases in fault detection. For instance in leak 
scenarios the quantization error increases rather fast 
when the leak begins to cause remarkable changes in 
the process dynamics. In some cases the 
quantization error can be used even for failure 
separation, but usually other methods are required 
for support. In this chapter we concentrate in failure 
separation with U-matrix trajectories. 
In failure detection with U-matrix the trajectory 
crossing cluster borders is one indication of failure. 
Different SOM’s taught with different process state 
data sets are used for classifying fault states. The 
process state is determined to correspond to the 
SOM with smallest quantization error. 
Five different failure scenarios are experimented 
with the Simulink process model. U-matrix with 
trajectories for normal data and each failure scenario 
are seen in Figure 2. In these scenarios the 
trajectories move into separate areas in each 
scenario, and therefore the separation of these cases 
is rather clear. This is no proof that it would be 
always the case. When separation comes more 
difficult, also other methodologies and combinations 
of various methodologies need to be taken in use. 
Appropriate feature selection and preprocessing is 
necessary for successful failure separation. 
In the first U-matrix the data is from the normal 
process state, see Figure 2a. In the second U-matrix 
there is a data of a leakage between reactor and 
preheater. The water level of the reactor core begins 
to decrease and the reactor temperature begins to 
increase. The U-matrix trajectory in Figure 2b 
moves into the Fault 1 area. (The fault areas are 
labeled in the Figure 1 in the previous section). 
In the third U-matrix the data is from a leakage that 
appears between one turbine and condenser. 
Pressure drops in the corresponding section and the 
temperature increases. The trajectory moves into the 
Fault 2 area in this scenario, see Figure 2c. 
In the fourth U-matrix the admission valve 
accidentally closes. The pressure in that turbine 
branch increases. The trajectory moves into the 
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Fault 3 area in Figure 2d. This is the same scenario 
that is seen in Figure 1 in the previous section. 

 
Figure 2: U-matrix with trajectories for different failure 

scenarios. 

In the fifth U-matrix there is a leakage in the cooling 
system. This causes increasing temperatures near by 
in the process. The trajectory in Figure 2e moves 
into the Fault 4 area. The data of the fifth failure 
scenario, which is a disturbance in the reactor 
power, is not visualized in this paper. 
This example shows that with U-matrix trajectories 
it is possible to separate various failures in simple 
cases with a limited number of states. The cases with 
the real industrial data are more complicated and 
more difficult to handle.  

5 Prototype Analysis 

DERSI has three essential parts, simple rule-based 
inference engine, SOM of all states and set of   
classification SOMs for every state. 
Rule-based inference has been common in DSS [1] 
but no other system was found that uses SOM as a 
classifier and SOM quantization error as a feature 
for rule-based inference. Although some studies 
were found that integrate other neural networks with 
a rule base [32]. Most of decision support with SOM 

U-matrix were for marketing or investment 
decisions [5,6].  
DERSI does not use utility theory for decision 
support. It seems that utility theory is more suitable 
for isolated decision situation with limited amount of 
alternatives rather than real-time decision support 
with possibly unclear connection between 
recommendations and process goals. 
In further development of the prototype feedback 
from an industrial partner will be utilized. The 
feedback will be provided by a potential end user. 
Real process data from the Olkiluoto nuclear power 
plant and training simulator is also available. It is 
currently under study whether this data can be used 
for building a DERSI demo scenarios or decision 
support models.  

6 Discussion 

The strength of SOM is topological ordering of 
multidimensional space and projection to lower 
amount of dimensions. Visual inspection of the 
neighborhood of state U-matrix trajectory head 
reveals process states that are more likely in the near 
future than states far from the trajectory head. Other 
classifier than SOM could have been used in the 
sensors, but SOM was used for its ability to do 
visual correlation hunting. Visual correlation 
hunting is slow and in future it could be better to do 
automatic correlation handling by interpreting SOM 
component planes as vectors and calculating 
distances between these vectors. Correlations can 
also be detected with some other methods than 
SOM. 
An interesting question is if SOM based fault 
separation gives additional value in safety-critical 
Decision Support Systems (DSS). A DSS can also 
fail and a safety-critical process operator has to 
evaluate if he (or she) believes to the 
recommendations of a DSS or not. The operator 
needs to understand why a DSS worked like it did. 
Simple rules are easy but a neural network like SOM 
is essentially a black box and it is difficult for the 
operator to understand why the network gave a 
specific result. 
Actually many of these SOM based representations 
are difficult for the operators. The operators will 
need special training to be able to adopt the 
ennobled information in this form. We need to be 
critical in what representations are possible to use in 
various contexts. A special challenge is to define the 
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contents in the big screens of forthcoming modern 
control rooms in nuclear power plants. 
We have also made some tests with the BWR 
training simulator data. Unfortunately we met with 
some obstacles that made it impossible to report 
those tests in this paper. The state identification 
seems to work also with that data, but DERSI 
prototype needs some further development to be 
capable for analyzing thoroughly real industrial data. 
We try to make the framework as flexible as 
possible to be able to handle all kind of data in the 
future.  
DERSI prototype development is now in a phase 
where feedback from the industrial users will give 
the next guidelines. Various visualizations have been 
examined more in somewhat academic basis, and the 
next step is to enlighten more practical views by the 
end users. Failure management with quantization 
error and U-matrix trajectory analysis have already 
given hints how to proceed into that direction. 
Variable correlations and changes in them read from 
the component plane SOM maps is another similar 
example. 
In the literature survey it was easy to find 
information about different methods but difficult to 
find information about implementations of ready 
DSSs. One reason is that many of them are 
commercial products and the manufacturers do not 
want to reveal details to possible competitors. 

7 Summary 

A SOM based decision support approach applied in 
nuclear power plant control room environment has 
been presented. Literature has been surveyed to 
summarize the state-of-the-art, and to reflect our 
approach to related studies. A prototype has been 
developed to test the ideas in practice. The power of 
the prototype visualizations, and failure detection 
and separation has been shown with example 
scenarios. The methods are shown to be useful by 
practical examples. Our next step is to analyze the 
industrial data more in detail. As conclusion the 
failure separation with SOM works with tested data 
sets. 
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