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Abstract— The self-organizing map (SOM) and its 

variant, the visualization induced SOM (ViSOM), have 
been linked with principal manifolds. They have also 
been shown to yield similar results to multidimensional 
scaling (MDS). However the exact connection has not yet 
been established. In this paper we first examine their 
relationship with (generalized) MDS from their cost 
functions in the aspect of data visualization and 
dimensionality reduction. The SOM is shown to produce 
a quantized, qualitative or nonmetric scaling, while the 
ViSOM is a quantitative metric scaling. Then we propose 
a way to use the core principle of the ViSOM, i.e. local 
distance preservation, to adaptively construct a metric 
local scaling and extract a nonlinear manifold. 
Comparison with other methods such as ISOMAP and 
LLE has been made, especially in mapping highly 
nonlinear subspaces. The advantages over other methods 
are also discussed.  

1 Introduction 
A great challenge in an information era is to analyze a 
vast amount of data in order to extract useful information 
and to discover meaningful patterns and rules. Clustering, 
classification and projection of multidimensional data are 
widely used practices for this purpose in many fields 
ranging from high-throughput bioinformatics and web 
information extraction to pattern recognition, decision 
support, and data and knowledge management. Seeking a 
suitable and meaningful representation of the data space 
has always been a key objective of data analysis and 
pattern recognition. Projecting and abstracting data onto 
their underlying subspace can reduce the number of 
features and identify latent variables, detect intrinsic 
structures, facilitate visualization and analysis of the 
interactions between variables. With the ever fast 
increasing quantity and complexity of the data (and 
pattern features) used for pattern recognition tasks, more 
sophisticated methods are required and being developed. 
A great deal of research has been devoted to this 
emerging topic, mainly on improving and extending the 
classic methods such as the principal component analysis 
(PCA) and multi-dimensional scaling (MDS).  

PCA has long been considered to be the work horse 
and widely used in reducing variables and visualizing data 
in scatter plots or linear subspaces. Singular value 
decomposition and factor analysis are adopted to perform 
the task due to various advantages such as direct 
operation on data matrix, stable results even when data 
matrices are ill-conditioned, and decomposition at both 
feature and data level. The linearity of PCA however 
limits its power for practical, complex and increasingly 
large data sets, as it cannot capture nonlinear relationships 
defined by beyond second order statistics. Projection onto 
a linear plane will only provide limited feature reduction 
or visualization power. Extension to nonlinear projection, 
in principle, can tackle the problems better; yet a unique 
solution is still to be defined [19]. Various methods have 
been proposed, such as, the auto-associative networks 
[15], generalized PCA [11], kernel PCA [26], principal 
curve and surface [9], and local linear embedding (LLE) 
[24]. 

MDS is another popular statistical method that tries 
to project data points onto a lower (often two) 
dimensional plane by preserving as close as possible the 
inter-point metrics [2]. Metric MDS generalizes the 
classic MDS by minimizing a stress function. The 
mapping is generally nonlinear and can reveal the overall 
structure of the data. Sammon mapping [25] is a widely 
known example and uses an inter-point distance in the 
data space as the weighting for the stress. In contrast to 
metric MDS, non-metric MDS finds a monotonic 
relationship (instead of metric ones) between the 
dissimilarities of the data points in the data space and 
those of their corresponding coordinates in the low-
dimensional space. More general weighting scheme has 
been proposed recently and the resulting MDS is called 
generalized MDS [1]. Isomap [27] applies scaling on 
geodesic instead of Euclidean distances. MDS methods 
are point-to-point mappings and do not provide 
generalizing mapping functions or manifolds.  

Neural networks present alternative approaches to 
nonlinear data projection and dimension reduction. They 
can provide (implicit) generalizing mapping functions. 
Early examples including feed-forward neural network 
based mapping [20] and radial basis function based MDS 
[17]. The self-organizing map (SOM) [12, 14] has 
become a widely used method for data visualization and 



dimensionality reduction. The topology preserving 
property of the SOM is utilized to extract and visualize 
relative mutual relationships among the data. Many 
variants and extensions have since been proposed, 
including the recent visualization induced SOM (ViSOM) 
[31, 32]. The ViSOM regularizes the inter-neuron 
distances within a neighborhood so to preserve (local) 
distances on the map. 

2 SOM, ViSOM and MDS  
In this section, the relationships among SOM, ViSOM, 
principal manifold and MDS are revealed and discussed.  

2.1 SOM 
The SOM uses a set of neurons, often arranged in a 2D 
rectangular or hexagonal grid, to form a discrete 
topological mapping of an input space, X∈ℜn. At the start 
of the learning, all the weights {wr1, wr2, …,wrm} are 
initialized to small random numbers. wri is the weight 
vector associated to neuron i and is a vector of the same 
dimension, n, of the input. m is the total number of 
neurons. ri is the location vector (coordinates) of neuron i 
on the grid. Then the algorithm repeats the following 
steps. 

• At each time t, present an input, x(t), select the 
winner, 
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• Updating the weights of winner and its neighbors, 
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• Repeat until the map converges. 
where ),,( tkvη  is the neighborhood function and Ω is the 
set of neuron indexes. Although one can use the original 
top-hat type of neighborhood function, a Gaussian form, 
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σ representing the effective range of the neighborhood. 
The cost function of the SOM has been discussed in 

the SOM community, e.g. [5, 10, 13, 16, 18, 21, 30]. At 
least in discrete case, or in approximation, the cost 
function can be written as, 
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which naturally leads to the SOM update algorithm using 
the sample or stochastic gradient descent method. 

The SOM has been widely used for data 
visualization. However the interneuron distances, as 
referred to the data space, have to be marked crudely by 
colors or gray levels. The coordinates of the neurons (the 
resulting of scaling) are fixed on the lower dimensional 
(often 2D) grid and do not resemble the distances 
(dissimilarities) in the data space. 

2.2 ViSOM 
For metric scaling and data visualization, a direct and 
faithful display of data structure and distribution is 
desirable. For the map to capture the data structure 
naturally and directly, (local) distance quantities must be 
preserved on the map, along with the topology. The map 
can be seen as a smooth and graded mesh embedded into 
the data space, onto which the data points are mapped and 
the inter-point distances are locally preserved. 

In order to achieve that, the updating force, x(t)-wk(t), 
of the SOM algorithm is decomposed into two elements: 
[x(t)-wv(t)] and [wv(t)-wk(t)]. The first term represents the 
updating force from the weight of the winner v to the 
input x(t), and is the same to the updating force used by 
the winner. The second force is a lateral contraction force 
bringing neighboring neurons to the winner. In the 
ViSOM [31], this lateral contraction force is regulated in 
order to help maintain unified inter-neuron distances 
||wv(t)-wk(t)|| at least locally on the map.  
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where the simplest constraint can be β:=dvk/(Dvkλ)-1, dvk  
is the distance of neuron weights in the input space, Dvk 
the distance of neuron indexes on the map, and λ a 
resolution parameter (scale), i.e. the desired inter-neuron 
distance on the map referred to the data space. 

The ViSOM regularizes the contraction force so that 
local distances between the nodes on the map are 
analogous to the distances of their weights in the data 
space. In addition to SOM’ objective for minimizing the 
quantization error, the aim is also to ensure the 
interneuron distances on the map in proportion to those in 
the data space, i.e. Dvk∝dvk, or λDvk≈dvk, at least locally. 
When the data points are eventually projected on a trained 
map, the distance between two local data points in the 
original space is proportional to that on the map, subject 
to the quantization error and map resolution. The key 
feature of the ViSOM is that the distances between 
neurons (which data are mapped to) on the map (in a 
neighborhood) reflect the corresponding distances in the 
data space. This makes visualization more direct and 
quantitative and resembles metric MDS. The map 
resolution can be enhanced by interpolating a trained map 
or incorporating local linear projections to reduce the 
computational cost of the training [33]. The neighborhood 
size determines the locality of such distance-preserving 
effect and the rigidity or curvature of the map.  

Several improvements have since been made on the 
original ViSOM. For example, interpolation and a local 
linear projection (LLP) are proposed to enhance the 
resolution of the ViSOM or to make the mapping 
continuous in [33]. In [29], a probabilistic data 
assignment is used in both the input assignment and the 
neighborhood function and a second-order constraint is 
adopted. In [6] the ViSOM principle has been extended to 
arbitrary, neural gas type of map structure.  
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2.3 Connection with principal curves 
The SOM has been related (e.g. [23]) to the discrete 
principal curve/surface, a smooth, self-consistent 
curve/surface that does not intersect itself [9]. However 
the differences remain in both the projection and 
smoothing processes. In the SOM data are projected onto 
the nodes rather than onto the curve. The principal 
curve/surface performs the smoothing in the data space. 
The smoothing process in the SOM and ViSOM, as a 
convergence criterion, is [31], 
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The smoothing is governed by the indexes of the 
neurons in the map space. The kernel regression uses the 
arc length parameters (ρ, ρi) or ||ρ−ρi|| exactly, while the 
neighborhood function uses node indexes (k, i) or ||k-i||. 
Arc lengths reflect the curve distances between the data 
points. However, node indexes are integer numbers 
denoting the nodes or the positions on the map grid, not 
the positions in the input space. So ||k-i|| does not 
resemble ||wk-wi|| in the SOM. In the ViSOM, however, as 
the inter-neuron distances on the map represent those in 
the data space (subject to the resolution parameter), the 
distances of node indexes on the map are in proportion to 
the difference of their positions in the data space, i.e. ||k–
i||∼||wk–wi||. Furthermore the LLP method [33] can be 
used to make this approximation even more precise. Thus 
the smoothing in the ViSOM resembles that of the 
principal curve/surface as,  
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It shows that ViSOM is a closer approximation to the 
principal curves/surfaces than the SOM is. The SOM and 
ViSOM may be similar only when the data is uniformly 
distributed, or the number of nodes becomes very large. 

2.4 Connection with MDS 
The similarities between SOMs and MDS in terms of 
topographic mapping – mostly the qualitative likeness of 
the mapping results have been reported and discussed 
[e.g. 22, 32, 28]. However clear limitations of using the 
SOM for MDS have been noted [7]. Many applications 
combine the SOM and MDS for improved visualization 
of the SOM mapping results. We show that the metric-
preserving ViSOM approximates a discrete principal 
manifold and also produces a similar mapping result as to 
a metric MDS 

Let’s take a close look at the cost function (stress) of 
metric MDS and rewrite it as, 
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(Further weighting is introduced in curvilinear component 

analysis [4] and generalized multidimensional scaling 
[1].) 

The first term is a constant as data points are fixed 
and so is the second term eventually. To minimize the 
above stress is to maximize the third term. The third term 
plays a dominant role and explains that the mapping is to 
form corresponding correlation between inter-distances in 
the original and mapped spaces. This is closely related to 
the C measure for topographic mapping [8]. 

For SOMs, the sample cost is, 
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Note x is the date set confined to node i. As wk is the 
mean of voronoi region k, let’s denote it as kx . Let’s also 
denote ix  as the mean of voronoi region i. Furthermore 
η(i, k) is a function of ||i-k||. Then the above equation can 
be approximated as, 
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For SOMs, f(||i-k||) is simply the neighborhood 
function, typically an exponential function. The first term 
of its Taylor expansion is proportional to ||i-k||2 (subject to 
quantization error). This leads the above cost function 
approximately to, 

∑−
k

ikik dD 2)(                              (21) 

where Dik represents the distance between indexes of the 
neurons i and k on the map. Therefore the SOM preserve 
the correlation between the orders of the indexes of the 
neurons with the distances of their corresponding data 
regions in the input space. So that the largest dik matches 
the largest allowed Dik on the grid. As the grid is not 
scalable, the data points will be mapped to these pre-fixed 
grid positions to achieve maximum correlation. This is a 
qualitative or nonmetric scaling.  

In the ViSOM, as the ||i-k|| is proportional to ||wi-wk||, 
so Dik is D(wi, wk) and is a function of ||wi-wk||, which is 
the mapped distance referred to the input space in the 
metric MDS sense. Thus this shows why the ViSOM 
produces similar scaling results as to MDS as observed in 
[31, 32]. In other words it shows that the ViSOM is a 
metric MDS. The squared distance correlation terms in 
Eq. (21) have little different effect as to those non-squared 
ones in Eq. (18).  

As the ViSOM is a discrete principal manifold, at the 
same time it is also a MDS. This implies that MDS and 
principal manifolds are performing the same underlying 
task at least in the context of data visualization and 
dimension reduction. Finding a principal manifold, a 
smooth curve/surface passing through the middle of the 
data [9, 3], may well result in a topographical scaling of 
the input space onto the lower dimensional manifold. On 
other hand, although MDS presents a useful scaling of the 
data on low dimension for visualization, it does not 
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provide the underlying mapping function, the manifold. 
The ViSOM can unite these two and provide both metric 
scaling and nonlinear manifold function. 

3 Incremental ViSOM as metric 
MDS and nonlinear manifold 

Although we have shown that SOM and ViSOM are 
nonmetric and metric MDS respectively, one the 
difficulties for SOM-based algorithms is to converge to 
highly nonlinear manifolds such as swissroll data. Indeed 
high nonlinearity poses problems for many MDS and data 
projection methods. Isomap [27] adopts geodesic distance 
within a neighborhood instead of global Euclidean 
distance in MDS to capture the nonlinearity of the data 
set. LLE [24] uses local linear embedding to approximate 
global nonlinearity.  

Here an incremental ViSOM or growing ViSOM 
(gViSOM) is proposed to extract nonlinear manifold and 
thus provide metric scaling to highly nonlinear manifold.  

gViSOM algorithm: 
 
(1) Initial map can be small, say N0×N0, in either 

rectangular or hexagonal, though the latter is 
preferred for better nonlinear abilities. Place the 
initial map to a linear subspace of either global or 
local region of the data space. Set the desired 
resolution and neighborhood (locality) size. 

(2) Randomly draw a data sample from the data space 
and find the winning neuron with the shortest 
distance. 

(3) If the sample falls within the neighborhood, update 
the weights of the neurons of the neighborhood 
using the ViSOM principle. 

(4) At regular iteration intervals (e.g. 1000 iterations), 
if the growing condition is met (e.g. the data is 
underrepresented by the existing map), grow the 
map by adding one column or row to the side with 
the highest activities (e.g. winning frequencies). 
The added column or row is a linear extrapolation 
of existing map. Other growing structures can be 
used such as incrementing polygons instead of 
entire column or row for a free structure of the map 
and efficient use of neurons. 

(5) As in the ViSOM, at regular intervals (e.g. every 
certain iterations), refresh the map (neurons) 
probabilistically. 

(6) Check if the map has converged. If not go back to 
step 2); if so go to next step.  

(7) Project the data samples onto the map, either to the 
neurons or by the interpolation or LLP resolution 
enhancement method [33].  

 
Several typical results are shown in Figs. 1-3. The 

proposed growing ViSOM is applied to 2000-point 3D 
nonlinear “S” shape dataset and the resulting embedding 

is shown in Fig. 1(a), together with the data. The results 
of the Isomap and the LLE are shown in Fig. 1 (b) and (c) 
respectively. 
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(a) gViSOM embedding in “S” data cloud. 
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Two-dimensional Isomap embedding (with neighborhood graph).

 
(b) Isomap scaling. 
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(c) LLE projection  

Figure 1: Comparison of ViSOM with Isomap and LLE 
on “S” shape dataset. 

 
Here 2000 data points were generated according to 

[24]. The gViSOM started with 5×5 grid and finally 
settled to 8×17. The resolution was set to 0.5. Typical 
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results of the Isomap and LLE were obtained using the 
code provided by their authors [24, 27]. Projected data 
scatter on the final ViSOM with the LLP resolution 
enhancement is shown in Fig. 2. Correct topology and 
scale is clearly shown. 
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Figure 2: gViSOM projection with LLP resolution 

enhancement of the ‘S’ shape data. Note λ=0.5. 
 
 

Fig. 3 shows the gViSOM embedding in the highly 
nonlinear swiss roll data set. Here the gViSOM started 
with 5×5 grid and finally settled to 18×70. The resolution 
was set to 1.5. Isomap and LLE results, obtained using the 
code provided by their authors, are shown in Fig. 4 (a) 
and (b) respectively.  
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Figure 3: Swissroll data and gViSOM embedding 

 
The advantages of the gViSOM are evident as it 

produces much more faithful metric scaling and extract 
the manifold function well. In addition, it can cope with 
discontinuities of the manifold (e.g. holes in manifold or 
separated manifold), and adapt to the dynamics (slow 
changes) of the manifold, which both the Isomap and LLE 
(and other scaling methods) have to re-capture with the 
entire data set once any part or whole is updated. Neural 
methods also have better abilities handling noise. 

 

-60 -40 -20 0 20 40 60
-15

-10

-5

0

5

10

15
Two-dimensional Isomap embedding (with neighborhood graph).

 
(b) Scaling by Isomap 
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(c) Embedding of LLE 

Figure 4: Isomap scaling and LLE projection on swiss roll 
data.  

4 Conclusions 
In this paper we have shown the effect of the SOM and 
ViSOM in performing multidimensional scaling. The 
SOM and ViSOM can be regarded as a generalized MDS 
and nonlinear manifold. While the standard SOM 
produces a nonmetric MDS, the ViSOM provide a metric 
MDS and principal manifold. In order to guide the 
ViSOM to a highly nonlinear manifold, a growing 
ViSOM is proposed to gradually and locally extract the 
manifold and scaling the data samples metrically on the 
map. Superior scaling performances have been achieved. 
Examples and comparison with the Isomap and LLE 
methods are given.  
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