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Abstract— Metric adaptation constitutes a powerful
approach to improve the performance of prototype based
classication schemes. We apply extensions of Generalized
LVQ based on different adaptive distance measures in the
domain of clinical proteomics. The Euclidean distance in
GLVQ is extended by adaptive relevance vectors and ma-
trices of global or local influence where training follows
a stochastic gradient descent on an appropriate error func-
tion. We compare the performance of the resulting learning
algorithms for the classification of high dimensional mass
spectrometry data from cancer research. High prediction
accuracies can be obtained by adapting full matrices of rel-
evance factors in the distance measure in order to adjust
the metric to the underlying data structure. The easy in-
terpretability of the resulting models after training of rele-
vance vectors allows to identify discriminative features in
the original spectra.

1 Introduction

The search for disease marker is a prominent task in a clin-
ical study. Recent achievements in clinical proteomics are
especially promising to get predictive models or markers
for different kinds of diseases [6, 4]. Clinical proteomics
refers to the analysis of the proteome, the whole set of pro-
teins of an organism, in the clinical domain. The data are
typically taken from blood or urine samples. One promi-
nent technique to analyse proteomic data is available by
mass spectrometry. The obtained spectral data are high
dimensional measurements, with more than10000 mea-
surement points and need an appropriate preprocessing as
well as sophisticated high level data analysis approaches,
to attain validated signal patterns. Focusing on classifi-
cation between different clinical states the generalization
ability as well as the interpretability of the models is espe-
cially important. Prototype based classification approaches

such as Learning Vector Quantization (LVQ) as proposed
by Kohonen [5] or multiple extensions [2, 1] have already
proven to be valuable in such experiments (see [7, 8]).
Due to the complexity of the data and the desired task
of biomarker discovery the used metric becomes very im-
portant as shown in [10]. In the previously published ap-
proaches correlative effects between different features were
ignored in general. For LVQ type algorithms with gener-
alized relevance learning [3], a more powerful alternative,
which includes adaptive relevance factors in the diagonal
matrix of the metric, is available. This allows to scale the
axes in order to obtain better adaptation towards clusters
with axes-parallel ellipsoidal shapes.

For mass spectrometry data of proteome studies local
and global correlations are very likely to provide additional
information for the classification method which have not
been captured so far. In this context, the recently intro-
duced Generalized Matrix LVQ (GMLVQ) [11, 14] as an
example of a prototype based classifier is applied to two
different data sets of proteome studies. We allow for a
full adaptive matrix, i.e. the possibility to adapt to arbi-
trary (local) ellipsoids which correspond to locally corre-
lated input dimensions. We show that this general method
leads to efficient and powerful classifiers with excellent
generalization ability on this kind of data. The set of dis-
criminative features can still be related back to the original
spectral masses, allowing for the identification of potential
biomarker patterns.

2 Clinical data and preprocessing

The proposed method is evaluated on two clinical data sets
obtained from blood plasma samples. The first data set
has been taken from45 patients suffering from colorectal
cancer and appropriate 50 non-diseased controls. The sec-
ond more complex data set was taken from50 patients with



Figure 1: Sample from a linear MALDI-TOF mass spec-
trum taken from the lung cancer data set.

lung cancer and 50 healthy controls. All samples have been
measured using a linear MALDI-TOF MS1. This leads
to spectra with approximately20000 measurement points
(1kDa − 10kDa). Each spectrum has been baseline cor-
rected and aligned as recommended in the standard proce-
dure by use of ClinProTools2. The details on the sample
collections and the overall measurement procedure can be
found in [9]. A sample spectrum is depicted in Figure 1.

To obtain discriminant features for our analysis a multi-
resolution wavelet analysis by a discrete biorthogonal
wavelet transform has been applied. Here, bior3.7 wavelets
at scaleL = 4 have been taken as the final feature set (de-
tails in [9]). By application of this procedure we finally
analyse sets of95 or 100 spectra with1408 wavelet co-
efficients. In one of the subsequently shown experiments
we used the data in a measurement range of1500kDa −
3500kDa where most of the signal information was ob-
served, encoded by417 coefficients. By use of that ap-
proach the features can be still related back to the original
mass positions in the spectra which is important for poten-
tial biomarker analysis by additional measurements where
the mass positions are relevant. In addition the chosen level
of abstraction in the wavelet analysis allows to preserve
also small peak widths.

3 Generalized Matrix LVQ

Learning Vector Quantization belongs to the class of dis-
tance based classification schemes. The training data is
approximated by a set of prototype vectors in the same
space, which can be used for nearest prototype classifi-
cation. Consider aC-class classification problem in a
n-dimensional space with the given training dataX =
{(ξj , c(ξj)) ∈ Rn × {1, . . . , C}}m

j=1. An LVQ-classifier
is defined by a set of prototype vectorswi ∈ R

n, i =
1, . . . , c, which represent the different classes and are
masked with labelsc(wi) ∈ {1, . . . , C}. Classification is

1Bruker Daltonik GmbH, Bremen, Germany
2http://clinprot.bdal.de

based on a distance measured, which evaluates the simi-
larity between given data and the prototypes. A data point
ξ is assigned to class labelc(ξ) = c(wi) of prototypewi

for whichd(wi, ξ) ≤ d(wj , ξ) holds for allj 6= i.
Learning aims at finding a set of prototypes such that the
training samples are mapped on their respective class la-
bels. Generalized LVQ [1] does so by minimizing the cost
function S in equation (1) with a stochastic gradient de-
scent procedure.

S =
m∑

i=1

f(µ(ξi)) with µ(ξi) =
dJ − dK

dJ + dK
(1)

where f is a monotonically increasing function,dJ =
d(wJ , ξi) is the distance of feature vectorξi to the closest
prototypewJ with c(ξi) = c(wJ) anddK = d(wK , ξi)
is the distance to the closest prototypewK with c(ξi) 6=
c(wK). The derivatives off(µ(ξ)) with respect towJ and
wK for a randomly selected exampleξ yield the update
rules for the GLVQ-algorithm [1].
The underlying similarity measured is of special impor-
tance for the performance of LVQ-classifiers. GLVQ is
based on the standard Euclidean metric and thus possi-
bly fails for high-dimensional or heterogeneous data [13].
An extension of GLVQ, Generalized Relevance LVQ [3],
is based on the more powerfulweightedEuclidean metric
dλ(w, ξ) =

∑
i λi(ξi − wi)2 with λi ≥ 0 and

∑
i λi = 1.

The vectorλ ∈ Rn weights the input dimensions accord-
ing to their relevance to solve the classification task. It is
adapted to the data during training via a stochastic gradi-
ent descent as well. This strategy helps to prune out irrele-
vant or noisy dimensions and allows to identify the features
which provide the most discriminative power. The metric
becomes even more powerful by assigning an individual
weight vectorλj to each prototypewj . This method (Lo-
calized GRLVQ) has been investigated in [12] and takes
into account that relevances might differ between different
classes.
Recently, we have extended the weighted Euclidean met-
ric dλ by introducing a full matrixΛ ∈ Rn×n of relevance
factors in the distance measure [11, 14]. The metric has the
form

dΛ(w, ξ) = (ξ −w)T Λ (ξ −w)

This approach allows to account for correlations between
different input features. A set of points equidistant from
a prototype can have the shape of a rotated ellipsoidal,
whereas the relevance vectorλ in GRLVQ only results in a
scaling parallel to the coordinate axis.
For the distance measuredΛ to be well defined, the matrix
Λ has to be positive (semi-) definite. For this reason,Λ is
substituted byΛ = ΩΩT with Ω ∈ Rn×n. To obtain the
adaptation formulas, the derivatives of (1) with respect to
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wJ , wK andΩ have to be computed.

∆wJ = +ε1 ·
4 f ′(µΛ(ξ)) dK

Λ

(dJ
Λ + dK

Λ )2
· ΩΩ · (ξ −wJ)

∆wK = −ε1 ·
4 f ′(µΛ(ξ)) dJ

Λ

(dJ
Λ + dK

Λ )2
· ΩΩ · (ξ −wK)

∆Ωlm = −ε2 ·
2 f ′(µΛ(ξ))
(dJ

Λ + dK
Λ )2

·(
dK

(
[ΩJ ]m(ξl − wJ

l ) + [ΩJ ]l(ξm − wJ
m)

)
−dJ

(
[ΩK ]m(ξl − wK

l ) + [ΩK ]l(ξm − wK
m)

) )
where[ΩJ ] = Ω(ξ −wJ) and[ΩK ] = Ω(ξ −wK).
Note that we can assumeΩ> = Ω without loss of gener-
ality and that the symmetry is preserved under the above
update. After each update stepΛ has to be normalized to
prevent the algorithm from degeneration. It is enforced that∑

i Λii = 1 by dividing all elements ofΛ by the raw value
of

∑
i Λii. In this way the sum of diagonal elements is fixed

which coincides with the sum of eigenvalues here. This
extension of GRLVQ is named Generalized Matrix LVQ
(GMLVQ) [11, 14].
By attaching local matricesΛj to the individual prototypes
wj , ellipsoidal isodistances with different widths and ori-
entations can be obtained. The algorithm based on this
more general distance measure is called Localized GM-
LVQ (LGMLVQ) [11, 14].

4 Results

As a preprocessing step, the features were normalized to
zero mean and unit variance. In a first experiment, all
1408 wavelet coefficients were used to perform classifica-
tion with GRLVQ and LGRLVQ. Each class was approxi-
mated by one prototype vector. The initial learning rate for
the prototypes was set toε1 = 0.01, for the relevance vec-
tors it was chosen slightly smaller and set toε2 = 0.005.
The learning rates were continuously reduced in the course
of learning. We implemented a learning rate schedule of
the form

ε1,2(t) =
ε1,2

1 + c(t− τ1,2)

with τ1 = 1, τ2 = 50 andc = 0.001. Here,t counts the
number of randomly shuffled sweeps through the training
set,τ2 gives the start of relevance learning after an initial
phase of pure prototype training. Because of the limited
number of training samples, we performed a 5-fold cross
validation to evaluate the quality of the classification. Ta-
ble 1 summarizes the mean classification accuracies and
standard deviations over the five training sets.
We could observe that most misclassifications are caused
by samples belonging to the diseased-class. But increasing
the number of prototypes for this class indicates over-fitting
effects and does not improve the prediction accuracies on

the test sets. A complete receiver operating characteristic
(ROC) curve which depicts the false negative rate versus
the true positive rate is given in Figure 2.

Colorectal cancer
Algorithm Mean(Test) σ
GRLVQ 84.21 5.3

LGRLVQ 88.42 6.9

Lung cancer
Algorithm Mean(Test) σ
GRLVQ 84 4.2

LGRLVQ 82 0.08

Table 1: Mean values and standard deviations of the clas-
sification accuracies (in %) over the five different test sets,
based on 1408 wavelet coefficients.
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Figure 2: ROC-curves of the different classifiers based on
1408 wavelet coefficients. (a) Colorectal cancer data set,
(b) Lung cancer data set.

The resulting relevance profiles reflect that the algo-
rithms select only a very small subset of coefficients to
distinguish cancer and control samples. The majority of
relevance values goes down to zero in all runs. Pruning of
less relevant dimensions clearly improves the algorithms
performance compared to GLVQ which shows divergent
behaviour in all experiments. After GRLVQ training, the
classification is even based on only two features, but still
achieving a mean accuracy above 80%. Figure 3 depicts
typical relevance profiles which are achieved when train-
ing with the local weighted Euclidean metric. Depending
on the training set, the number of relevant features per class
varies from one to five (colorectal cancer data) and from
two to six (lung cancer data). One identified region in the
colorectal cancer data is depicted in Figure 4. It provides a
clear separation between the two classes.
By inspection of peaks with a relevance of> 0.05 we ob-
served that some features contain signal information with
very low intensities. Such weak signals are however prob-
ably not usable in case of later biomarker identification and
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should be removed. Discriminative mass positions with
small intensity values are less easier to interpret than peaks
with higher S/N ratios but can be further analysed by an
additional LC/MS analysis. Therefore the dimensionality
of the feature space may be further reduced taking such ad-
ditional expert knowledge into account.
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(a) Colorectal cancer data set
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(b) Lung cancer data set

Figure 3: Local Relevance Profiles after LGRLVQ training
with 1408 wavelet coefficients.

Figure 4: Relevant region for the colorectal data set around
wavelet coefficient 325 (area in the box on the left). One
observes a quite good separation between the two classes.
The wavelet coefficient encodes the left shoulder of the
peak which is more discriminative than the peak maximum
with respect to the same region in the control group.

In a second experiment, (L)GRLVQ and (L)GMLVQ
were applied to a reduced subset of only 417 coeffi-
cients. The selection of the coefficients ranges from
1500kDa to 3500kDa and was provided by a biological
expert. The parameter settings were chosen as before and
we used the same learning rates for the relevance vectors
and the matrices, respectively. Table 2 summarizes the
classification results obtained by the different algorithms.
We also include the complete ROC curves (see Figure 5).

Colorectal cancer
Algorithm Mean (Test) σ
GRLVQ 84.21 5.3

LGRLVQ 88.42 5.8
GMLVQ 91.58 4.7

LGMLVQ 92.63 6.0

Lung cancer
Algorithm Mean (Test) σ
GRLVQ 83 2.7

LGRLVQ 80 1.0
GMLVQ 83 1.2

LGMLVQ 89 6.5

Table 2: Mean values and standard deviations of the clas-
sification accuracies (in %) over the five different test sets,
based on a subset of 417 wavelet coefficients.
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Figure 5: ROC-curves of the different classifiers based on
417 wavelet coefficients. (a) Colorectal cancer data set, (b)
Lung cancer data set.

By using the new distance measuredΛ, the classification
performance could be improved in comparison to GRLVQ
and LGRLVQ for both data sets. The observed improve-
ment is more than 3% for the colorectal cancer classifi-
cation and more than 6% for lung cancer classification.
Despite the large number of parameters we observed a
very stable behaviour and fast convergence of GMLVQ and
LGMLVQ in less then 150 cycles.
Training of relevance vectors results in a strong pruning of
less relevant dimensions again, similar to the previous ex-
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periments (see Figure 6). But it is interesting to note that
the adaptation of matrices leads to a completely different
behaviour in this respect. Figure 7 visualizes the diago-
nal elements of the global relevance matrices which came
out of GMLVQ training with the same training sets used for
Figure 6. The diagonal elements reflect that there is no spe-
cial focus on only a small subset of coefficients any more.
Instead, the resulting matrices show one dominating eigen-
value in all experiments. This indicates, that the classifiers
mainly base their decision on a single new feature, which
is given by a non-trivial linear combination of the original
features. By adapting matrices, the classifiers are able to
determine a new, possibly lower-dimensional feature space
which provides more discriminative power to distinguish
the two classes. This results in a better classification per-
formance, but allows no straightforward interpretation of
the newly detected feature set.
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Figure 6: Global relevance vectors after GRLVQ training
with 417 wavelet coefficients. (a) Colorectal cancer data
set, (b) Lung cancer data set.
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Figure 7: Diagonal elements of the global relevance ma-
trices after GMLVQ training with 417 wavelet coefficients.
(a) Colorectal cancer data set, (b) Lung cancer data set.

5 Conclusion

In this article different variants of relevance learning in
the context of learning vector quantization have been suc-
cessfully applied in the classification of mass spectromet-
ric data. The obtained classification results show for each
data set an overall improvement in the prediction accuracy
using the Generalized Matrix LVQ approach. Local rele-
vance learning has been found to be valuable with respect
to improved prediction accuracy as well as with respect to
the identification of class specific relevant features. The
relevant features indicated by Generalized Relevance LVQ
could be verified to be relevant with respect to the underly-
ing masses in the original spectral data through visual inter-
pretation by experts. The wavelet encoding facilitates also
the identification of features which belong to small peaks
and not fully resolved peak regions like peak-shoulders.
Interestingly, matrix adaptation turned out to be quite ro-
bust despite from a large number of free parameters (which
is quadratic with respect to the input dimensionality). It
can be assigned to the fact that matrix learning constitutes
a large margin optimization method with excellent gerenal-
ization ability such as GRLVQ itself where generalization
bounds which are independent on the number of free pa-
rameters but which depend on the hypothesis margin of the
classifier can be derived [11, 14].

References

[1] A. Sato and K. Yamada. Generalized learning vector
quantization. In D. S. Touretzky, M. C. Mozer, and M.
E. Hasselmo, editors, Advances in Neural Information
Processing Systems 8. Proceedings of the 1995 Confer-
ence, pages 4239. MIT Press, Cambridge, MA, USA,
1996.

[2] B. Hammer, M. Strickert, and T. Villmann. Supervised
neural gas with general similarity measure. Neural Pro-
cessing Letters, 21(1):2144, February 2005.

[3] B. Hammer and T. Villmann. Generalized relevance
learning vector quantization. Neural Networks, 15(8-
9):10591068, 2002.

[4] R. Ketterlinus, S-Y. Hsieh, S-H. Teng, H. Lee, and W.
Pusch. Fishing for biomarkers: analyzing mass spec-
trometry data with the new clinprotools software. Bio
techniques, 38(6):3740, 2005.

[5] T. Kohonen. Self-Organizing Maps, volume 30 of
Springer Series in Information Sciences. Springer,
Berlin, Heidelberg, 1995. (2nd Ext. Ed. 1997).

[6] J. Villanueva, J. Philip, D. Entenberg, and C.A.
Chaparro et al. Serum peptide profiling by mag-
netic particle-assisted, automated sample process-
ing and maldi-tof mass spectrometry. Anal. Chem.,
76:15601570, 2004.

[7] F.-M. Schleif, T. Elssner, M. Kostrzewa, T. Villmann,
and B. Hammer. Analysis and visualization of pro-

5



teomic data by fuzzy labeled self organizing maps.
In Proceedings of CBMS 2006, pages 919924. IEEE
press, 2006.

[8] F.-M. Schleif, T. Villmann, and B. Hammer. Prototype
based fuzzy classification in clinical proteomics. Spe-
cial issue of International Journal of Approximate Rea-
soning on Approximate reasoning and Machine learn-
ing for Bioinformatics, page to appear, 2006

[9] F.-M. Schleif, T. Villmann, and B. Hammer. Super-
vised Neural Gas for Classification of Functional Data
and its Application to the Analysis of Clinical Proteom
Spectra. IWANN 2007, in press.

[10] T. Villmann, F.-M. Schleif, and B. Hammer. Compar-
ison of Relevance Learning Vector Quantization with
other Metric Adaptive Classification Methods. Neural
Networks, 19:610622, 2006.

[11] P. Schneider, M. Biehl, and B. Hammer. Relevance
Matrices in LVQ. In Proc. of ESANN 2007, pages 37-
42, Bruges, Belgium, April 2004.

[12] B. Hammer, F.-M. Schleif, and T. Villmann. On the
Generalization Ability of Prototype-Based Classifiers
with Local Relevance Determination, Technical Re-
port, Clausthal University of Technology, Ifi-05-14,
2005.

[13] M. Verleysen, D. Francoisand G. Simon, and V.
Wertz. On the effects of dimensionality on data anal-
ysis with neural networks. Springer-Verlag. Artificial
Neural Nets Problem solving methods, Lecture Notes
in Computer Science 2687,pagesII105–II112, 2003.

[14] M. Biehl, B. Hammer, and P. Schneider. Matrix
Learning in Learning Vector Quantization, Technical
Report, Insitute of Informatics, Clausthal University of
Technology, 2006.

6


