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Abstract. In Nuclear Safeguards, surveillance cameras monitor the correct 
processing of nuclear material. Nuclear inspectors are faced with tens of thou-
sands of images to review, of which less than 1% is significant. The Safeguards 
authorized means of reducing the image set is, at present, a two-frame differ-
encing change-detection filter. We further limit the set by tracking flasks thanks 
to the timing of events provided by image time-stamps. Traditional visual track-
ing cannot be applied, owing to the low frame rate, and the need for compatibil-
ity with the authorized change detection filter. Our algorithm is based on a hid-
den semi-Markov model of the nuclear process, and handles multiple flasks and 
observations available only when the flasks are moved. State occupancy dura-
tions are used when selecting the next image to review. 
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1   Introduction 

In Europe, there are more than 1000 nuclear sites verified by about 200 inspectors 
of the EURATOM Safeguards authority. Each surveillance camera acquires about 
20,000 images before these are reviewed, of which less than 1% are related to safe-
guards-relevant events. The remaining are images either with no change or with in-
significant events (e.g. moving cranes, trolleys, illumination changes). Inspectors 
eliminate the no-change images by applying a scene change detection algorithm 
(SCD) based on two-frame differencing [1]. Typically, this operation reduces the 
original image set from 20,000 to 2,000 images. The latter, reduced image set is 
manually reviewed and annotated to produce a review report.  

Nuclear processing being a well structured procedure, we claim that temporal and 
historical information can further reduce the image set to review. Herein we present a 
second filter, computing after SCD, which performs tracking with a motion model 
trained on time-stamps of events. 

The specific scenario of nuclear plants poses new challenges to the state-of-the-art 
visual tracking. The field of view covers all the locations where important processing 
takes place (Fig. 1). These locations are many meters apart, thus the appearance of a 
flask, which is the object of interest in image  reviews, forcefully changes during  the 
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Fig. 1. Inspector setting-up the cameras (left) in a real plant (right) (© D.Calma/IAEA). 

 
process. Furthermore, the acquisition rate is very low (1 frame every 3-10 min). Few 
images show the flask in any given location during a process cycle. 

In such conditions, traditional tracking with templates or adaptable shapes is diffi-
cult because: i) widely different appearances of the same objects in different loca-
tions; ii) the low frame rate does not guarantee the continuity of tracking, and makes 
dynamic template/shape update difficult. Additionally, iii) any tracking algorithm 
must be fully compatible with SCD in order to be acceptable by Safeguards authori-
ties, and iv) it must guarantee that, subject to correct parameter setting, a zero non-
detection rate (or ‘false negative rate’) is achievable.  

The solution discussed in this paper is based on a Markov-model representation of 
flask processing in a nuclear plant, with a statistical representation of process duration 
to better predict the next state. The algorithm is proposed for use in interactive mode 
to discover all images referring to correct stages of flask processing. 

2   Image Review of a Nuclear Process 

In a typical nuclear process a flask of fuel enters the hatch and reaches the decon-
tamination area, whence it is moved to the pond. From the pond, the flask moves back 
to the decontamination area and then exits the scene through the hatch. Table 1 shows 
the list of Safeguards-relevant events to be annotated by inspectors during reviews. 

A plant may be able to support the parallel processing of multiple flasks, so that a 
flask may begin the processing cycle while the previous is still ongoing. Also, nuclear 
plants possess a limited number of cranes to move the flasks. This feature limits the 
number of flasks that can enter a new stage of processing in any given moment, and 
hence an image can contain a number of safeguards-relevant events at most equal to 
the number of cranes. 

During a review, inspectors first define a set of areas of interest (AOI) on the im-
age plane around the interesting locations. For the example of Table 1, three AOIs 
would be drawn on hatch (H), decontamination (D), and pond (P). Then, a SCD algo-
rithm selects for review only images with AOIs that exhibited change beyond a 
threshold. For instance, if an image k is labeled [H, P], this means that the AOIs of 
hatch and pond exhibited sufficient change from k-1 to k. Inspectors browse the la-
beled batch and annotate only the relevant images with the appropriate event class. It 
is important to note that relevant images are annotated as soon as they are reviewed.  
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Stage Event Name SCD label 
1 Flask over hatch (ENTRY) H 
2 Flask in decontamination area (ENTRY) D 
3 Flask over pond (ENTRY) P 
4 Flask over pond (EXIT) P 
5 Flask in decontamination area (EXIT) D 
6 Flask over hatch (EXIT) H 

Table 1. An example of nuclear process composed of six stages, with relative labels. 

Fig. 2. Facsimile of a report redacted by inspectors after reviewing an image set.   
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Fig. 3. Facsimile of a sequence selected by SCD during a real review, together with real 
SCD labels (bottom). The images and AOIs are fictitious (real images are confidential). 

A facsimile of inspectors’ report is shown in Fig. 2 for a multi-flask process: in #611 
a second flask enters through the hatch while the first flask is still in decontamination. 

With reference to Table 1 and Fig. 2, if SCD had 0% false alarm rate, inspectors 
would browse a sequence like: #583:H – #585:D – #611:H – #612:D – #1220:P – 
#1398:P – #1400:D – #1465:P. With thresholds set so as to have zero false negatives, 
the false alarm rate of SCD is over 95%. Thus, the sequence selected by SCD around 
#583 is rather like Fig.3, where all but H in #583 and D in #585 are false alarms. 
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3   A Markov Model for Tracking Flasks 

In order to produce the report of Fig. 2, inspectors normally examine every single 
SCD image. We argue that tracking the state of the multi-flask processing would help 
in further reducing the number of images to review.  

Our problem consists in tracking the process state given the sequences of SCD la-
bels and the online confirmation of the events by the inspector. Once the present state 
is known, one may predict the next event and therefore filter out all images having a 
SCD label inconsistent with the prediction.  

In our low-frame-rate datasets there is meager or no continuity of information (a 
problem for visual tracking techniques), but there is recurrence. A flask undergoes a 
structured cycle which is the same for all flasks. Therefore tracking can be performed 
by modeling these regularities. 

We employ a hidden semi-Markov model (HSMM) of the processing performed in 
a nuclear plant. A discrete hidden Markov model (HMM) is a popular tool to repre-
sent time series of events [2] where the duration of state occupancy is intrinsically of 
geometric distribution. HSMMs relax this constraint by introducing flexible state oc-
cupancy distributions to represent sojourn times in non-absorbing states [3]. A semi-
Markov model (SMM) is composed of an embedded first-order Markov chain X and 
of discrete distributions of sojourn times S. The embedded chain is described by (T, 
χo), where χo is the initial state distribution and T is the transition matrix, such that Tij 
= P(Xt+1=j | Xt=i). For a SMM, Tii= 0, ∀i. The sojourn time distributions are a set of 
discrete distributions depending only on the current state, S = {Si, ∀i}. The model is 
hidden if the relation between the state and the observation is probabilistic. The emis-
sion distributions for every state are summarized in the emission matrix E, Eis = 
P(Ot=s | Xt=i), s being an emitted symbol (Fig. 4). 

Xt+1XXt-1

Ot+1OtOt-1

T T
E E E

sojourn times S 

 
Fig. 4. A hidden semi-Markov model (HSMM) represents events with generic durations. 

We define a plant by the parameters (F, K, N). F is the maximum number of flask 
processings supported in parallel by the plant. K is the number of available cranes to 
move the flasks around (K ≤ F). N is the number of processing stages that make up 
the nuclear process. In the example of Table 1, N = 6. In realistic plants, 1 ≤ F ≤ 3, 
K=1, and 3 ≤ N ≤ 10. 
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3.1    HSMM of a plant 

As previously said, a HSMM is completely specified by (T, E, χo, S). In our model, 
time is discretized so that each tick corresponds to a newly acquired image. The ticks 
are equally spaced in time. 

For building the state space, let us first define the real states of the plant as F-
arrays of labels indicating the individual progression of each flask in its processing. 
For instance, the real states of a plant with F = 3 and N = 6 are [1 1 1], [1 1 2], [1 2 
2],… [6 6 6]. We observe that: 
1. In practice, flasks cannot be distinguished. Hence a given state coincides with all 

states that can be expressed as a permutation of its labeling array (e.g. [1 3] is the 
same as [3 1]). This decreases the number of real states the model needs. 

2. A correct SCD observation occurs when there is flask movement in an AOI, i.e. 
when a flask enters or exits a location. Either ingoing or outgoing movements can 
be chosen to assign emissions to a state, but the choice must be coherent for all 
states. We choose to assign an emission distribution to a state on the basis of flasks 
entering that state. Even after this choice, real states have in general F emission 
distributions, one for each possible event that may “cause” that state. For instance, 
consider a plant with F=2. Its state [2 3] can be entered from [u 3], u≠2, thus trig-
gering an emission linked to a flask entering stage 2. Or it can be entered from [2 
v], v≠3, thus triggering an emission typical of a flask entering stage 3. To allow for 
multiple emission distributions, each real state is designed to be represented by F 
virtual states. 

Given these premises, the size of the state space for a plant (F, K, N) is M: 
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The transition matrix is a MxM square matrix. The size M is independent of K. How-
ever, note that the K cranes allow only K flasks to change state at any given time. This 
fact constrains the transition probability Tij to be 0 if two real states i and j differ for 
more than K single-process states. For example, in a plant with K = 1 and F = 2, the 
transition [1 1] → [2 2] is impossible. Moreover, all virtual states referring to the 
same real state have the same transition probabilities towards other real states (equal 
rows in T). A trivial example of T for a plant with F=2, K=1, and N=2 is given in (2). 
Note that, with N=2, the only possible events are either a flask going from stage 1 to 
stage 2 or vice versa (Tii being null by definition). 
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Because the tracking is performed on the labels outputted by SCD, we define the 
emission alphabet of size A as the set of SCD labels associated to the AOIs drawn by 
inspectors. In the example of Table 1, the emission alphabet is {H, D, P}, and A = 3. 
To give more insight, let us observe that A is the correct size of the emission space 
because we work under the assumption that SCD has a null false-negative rate – 
thanks to an “oracle” which has set the correct parameters. If the model is changed to 
remove this assumption, then an ‘idle’ symbol representing a missed SCD detection 
should be introduced.  

The matrix E is sized MxA. The emission distributions are 1 for the correct symbol, 
0 otherwise, see (2) above. In our case the sequence to be decoded comes from a fully 
reliable knowledge source (the inspector). As such, the hidden nature of the model 
lies only in the fact that the same symbol is emitted by a multiplicity of states, but all 
uncertainty on the “value” of the observed symbol disappears as soon as the inspector 
confirms or rejects it – as it will be better explained in Section 3.2. 

The initial state χo is available from the last annotated image of the preceding re-
port: in fact, the surveillance process is continuous and it is split in subsequent 
batches of images for convenience of inspections (Fig. 2). 

The distributions of sojourn times S are referred to single-flask processes and in 
general are non-geometric. Thus, each compound state in a plant has F associated dis-
tributions. For instance, state [2 3] is associated to durations of stage 2 and stage 3. 
We employ parametric distributions of types Gaussian, geometric with shift, and uni-
form, because: i) the Gaussian pdf captures a mean duration with relatively little di-
vergence; ii) the shifted geometric pdf captures the case of a minimal processing time 
followed by a decaying duration; iii) the uniform distribution captures the case of the 
beginning of a new process when the delay is unknown. Table 2 shows an example of 
S for the plant of Table 1. The unit time is one-frame interval. μ and σ are the mean 
and standard deviation of a Gaussian, α and β are the parameters of the geometric dis-
tribution α(1–α)n-β, defined for n ≥ β. 

 
Stage Statistics of duration 

1 Geometric, α = 0.288, β = 1 
2 Geometric, α = 0.054, β = 5 
3 Gaussian, μ = 186.9, σ = 18.4 
4 Geometric, α = 0.195, β = 1 
5 Gaussian, μ = 183.4, σ = 11.5 
6 Uniform 

Table 2. Descriptive statistics of stage duration S for the process of Table 1. 

3.2   Using the model interactively 

The general idea is that, given the history of annotations produced by the inspector 
during the review, the (T, E, χo, S) model can highlight the next most likely relevant 
SCD image. The inspector can decide to accept it by marking an annotation with a la-
bel corresponding to an admitted event, e.g. H D or P. If she ‘scrolls forward’ we as-
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sume the image was rejected. The interaction is repeated with the next image until the 
end of the review. 

Let us consider a mid-point during the review, when the inspector’s past annota-
tions form a sequence ν. In the framework of an official review, we can consider the 
inspector as a fully reliable knowledge source, so that ν is true with probability 1. This 
implies that the uncertainty on the timing of events and on the value of symbols in ν is 
null. HSMM decoding [3] becomes superfluous: we are allowed to use simple HMM 
decoding [2] to retrieve the current state distribution χ, with a decisive advantage in 
terms of computational complexity. 

The next image to present to the inspector is selected by computing the likelihood 
of every future image selected by SCD given χ and S. This likelihood is given by 
summing the S distributions of all stages associated to a state i with uniform probabil-
ity (1/F) and then weighting this sum by the probability of the state χi, ∀i. The image 
exhibiting Maximum Likelihood (ML) is selected. If the inspector rejects this candi-
date, its likelihood is set to zero and the second ML is proposed, etc. When an image 
is accepted and annotated, its symbol is added to ν and the procedure restarts. 

In case of a missed detection, which can happen due to the Bayesian framework of 
predictions, ν can be either inconsistent or consistent given (T, E, χo). In the former 
case – easily detected because χ is zero –, confirmed symbols are temporarily sup-
pressed in turn, with the heuristic of “last-confirmed suppressed first”, and the re-
maining sequence is re-decoded until a consistent sequence is found. The prediction 
procedure described above is then applied from that point. 

The case of a consistent sequence is treated as correct in all senses. Thus an error 
(missed detection) giving birth to a consistent sequence is not discovered unless, as 
the review progresses, the sequence ν becomes inconsistent. This problem unfortu-
nately nullifies any guarantee of null false detection rate of the HSMM. 

The guarantee of detecting a missed event given an inconsistent sequence ν instead 
exists. The duration distributions can be chosen so that all images are assigned a non-
null probability of being selected (distributions with support on the whole set). Thus, 
in the worst case the whole set will be proposed, image by image, until consistency is 
reestablished. 

3.3   Training the model 

A nice property of the proposed approach is its automatic learning ability without 
the need of further intervention by the inspectors. This property plays a more impor-
tant role than usual, as inspectors would hardly accept the increased overhead of train-
ing a computer system on top of their responsibilities and time. 

The actual values for elements of T are derived automatically by running the 
Baum-Welch learning algorithm for HMMs [2] on previous reports. Because previous 
reports contain only true events as annotated by the inspectors, the assumption on the 
distributions of E (Section 3.1) holds true also during training. S are likewise derived 
by standard parametric fitting on duration data in previous reports. 

Note that with our approach we employ for training all and only the information 
available on previous reports (types of events, their order and the time intervals be-
tween). 
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4   Performance Analysis 

Nuclear Safeguards images are confidential in nature. For this reason, we test our 
techniques on image sequences from [4]. Results are provided for these images (se-
quences ‘A’) and for the real Safeguards images (sequences ‘B’). 

 

HD

P

H-entry D-entry P-entry H-exitD-exitP-exit

False-1 False-6False-5False-4False-3False-2

HD

P

H-entry D-entry P-entry H-exitD-exitP-exitH-entry D-entry P-entry H-exitD-exitP-exit

False-1 False-6False-5False-4False-3False-2False-1 False-6False-5False-4False-3False-2  
Fig. 5. Images from set A. The first row shows the relevant events in this exercise. The im-
ages on the second row are false positives that trigger the SCD filter. 

4.1   Sequences A 

Sequences A are acquired in a laboratory environment where a mobile robot executes 
a series of programmed movements (Fig. 5). The setup simulates a plant with F=1, 
K=1, N=6. The robot moves a flask around a fictitious hatch (H), a decontamination 
area (D) and a pond (P), each identified by one AOI in Fig. 5. An AOI is drawn in red 
when SCD is triggered in that area; it is green otherwise. Examples of relevant images 
that testify the events H-entry, D-entry, P-entry, P-exit, D-exit, H-exit are shown on 
the first row of Fig. 5; the yellow arrows sketch the path followed by the robot. The 
flask is not always visible (e.g. due to rotatory movements of the robot after P-exit). 
The image set contains 1639 time-stamped frames corresponding to five runs of the 
robot, for a total of 30 relevant events (Table 3). 

Due to non-perfectly identical starting positions, the robot reaches the AOIs at dif-
ferent times in different runs, but overall the timing of events has only a limited vari-
ability. Thus, this image set captures a salient feature of Safeguards images: recur-
rence over time. On the other hand, many false positives trigger the SCD: people 
passing by (False 1-3), the shadow projected by the robot on AOIs (False 4) as well as 
its presence on an AOI during ‘flask-processing’ stages which are not to be annotated 
as relevant in a review report (False 5-6).  

4.2  Sequences B 

Sequences B are real-situation images acquired by a safeguards camera in two differ-
ent plants, and are accompanied by the respective official inspectors’ reports. The im-
age sets are characterized in Table 3. The camera has the same bird-view setup as the 
one reproduced in sequences A. Sets B1-B3 are taken from a plant with F=1, whereas 
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B4 and B5 are special in that they refer to a plant supporting two flask processings in 
parallel (F=2). Both plants process the flasks following Table 1 (N=6), and they em-
ploy a single crane (K=1). As above, SCD data are generated by drawing three AOIs 
on hatch, decontamination area, and pond. The images of set B are confidential. 

 
Image set Images H D P All events 

A 1639 10 10 10 30 
B1 20160 17 17 17 51 
B2 15661 1 1 1 3 
B3 16022 - - - - 
B4 16020 30 30 30 90 
B5 15446 12 12 12 36 

Table 3. Number of images and of events on locations H, D and P for image sets A and B. 

4.3   Experiments 

The SCD algorithm is run on the image sets, with low change-detection thresholds so 
that the false negative rate is zero. For sequences A, we train the model (T, E, χo, S) 
on two sequences, and test the model on the remaining three. For sequences B, we 
train the model on two single-flask cycles of B3 (12 total events), and test the same 
model on all other sequences B. The model for B1 and B2 is induced from the single-
flask model by extending it to the case of F=2. The inspectors’ reports play the role of 
the inspector during the interactive phase of the algorithm: an image is accepted if it is 
annotated on the report, otherwise it is rejected. The descriptive statistics S are either 
Gaussian, ‘delayed’ geometric or uniform distributions. The values reported in Table 
2 refer to the model trained on B3. 

As a measure of performance we compare the false alarms obtained with the SCD 
filter alone, and with the filter ‘SCD + (T, E, χo, S) model + the online inspector’. We 
observe a null false negative rate also after our filter. Meanwhile, we observe a reduc-
tion in the false alarms (Table 4). We observe reductions to 38% of the original num-
ber as a least performance, up to a best reduction to 7%. Most interesting is the reduc-
tion to 30% or less in B4 and B5, featuring two flasks in parallel. 

 
Set SCD SCD+HSMM+INSP % 
A 378 97 25,6 
B1 1493 279 18,6 
B2 390 147 37,7 
B3 2411 184 07,6 
B4 1694 520 30,7 
B5 964 244 25,3 

Table 4. False alarms generated by two filter configurations, and the reduction apported 
by HMM expressed as percentage of false alarms in column 3 with respect to column 2. 
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5   Discussion 

We consider the reductions to <40% of the inspectors’ effort as a significant result. 
They translate into a speed-up of 2 to 3 times with respect to current reviews, this way 
increasing the potential of an endured concentration throughout the review. Mean-
while, the chance of missing an important event remains low. Strictly speaking, our 
approach does not respect the requirement of zero non-detection in case of errors pro-
ducing a consistent sequence ν (Section 3.2). However, in our experiments it never 
occurred that a wrong consistent sequence remained consistent until the end of the re-
view. For this to happen, a full flask cycle must be missed. If at least one event is in-
stead detected, this event will generate an inconsistency in ν and thus will prompt a 
re-decoding and a retrospective analysis of events previous to the current point of the 
review, as described in Section 3.2. 

A few experiments were made on sequences B also with a non-deterministic E ma-
trix, which takes into account false alarm/false negative rates of the SCD via an extra 
‘idle’ symbol. The results showed that the false alarm rate of >95% misleads the for-
ward-backward algorithm into wrongly detecting an overwhelming number of false 
‘flask processing cycles’. We concluded that the interactive loop with a human opera-
tor is necessary, and also it is for free: the system adapts by taking advantage of op-
erations the inspector would do in any case to compile the online review report. This 
“effort-free” adaptive behavior is important for a system to be accepted by “real peo-
ple” with work practices that cannot be completely redesigned. 

Concerning the SCD, it is far from being of state-of-the-art level. However, it is in-
teresting to notice that its possibility to reach a zero non-detection rate when used 
with conservative SCD thresholds is what makes it attractive for nuclear applications. 
We are pursuing work on proposing Safeguards authorities new algorithms for motion 
detection which present this feature accompanied by a lower false alarm rate. 

The HMM uses a model of structured processing, thus it is not meant to discover 
images of irregular behavior. On the opposite: irregular behavior would be filtered 
out by our model. Starting from this observation, we plan to use this model as a basis 
for a novelty detection technique [5] to detect diversions from the approved and safe 
nuclear processings online. 

In our future work, we also plan to test the model on images of plants with F>2. 
Also, we are considering using an emission alphabet constituted by the full label-
arrays outputted by SCD instead of single labels. 
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