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Abstract. Developing a robust computer vision algorithm is very diffi-
cult because of the enormous variation of visual conditions. A systems
technology solution to this challenge is an automatic selection and config-
uration of different existing algorithms according to the task and context
of arbitrary applications. This paper presents a first attempt to generate
the required mapping between the task/context to the optimal algorithm
and algorithm configuration. This mapping is based on an extensive per-
formance evaluation. To practically handle the exhaustive search for opti-
mal solutions a new optimization challenge the Multiple-Multi Objective
Optimization (M-MOP) and an according solution based on genetic al-
gorithms is developed and evaluated. The results show the robustness
of the approach and guide further development towards an automatic
vision system generation.
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1 Introduction

The evolution of computer vision algorithms is enormous. As an example the
detection of objects has emerged from specific object instances with black back-
ground (e.g. the COIL database !) to object categories of outdoor images (e.g. the
PASCAL challenge [1]). However if classical vision difficulties as different light-
ing, background or motion will be relaxed the performance of even well known
algorithms drops down. The classical approach of computer vision science is a
further analysis of the image data to generate novel advanced performing algo-
rithms. The concept presented in this paper is inspired by the idea to analyze
image data to select and configure ezisting algorithms according to the present
task and context.

This analyze is carried out by an extensive evaluation on the performance
of vision algorithms. More precisely the Pareto front, the set of optimal con-
figurations, has to be filtered out. Optimality in this respect has to be carried
out according to all possible context dimensions. The algorithms themselves
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are treated as black boxes. Only their configuration as input and their context
depending performance as output are used to represent the algorithms. The con-
cept presented in this paper generates this data to enable dynamical selection of
the optimal algorithm and algorithm configuration according to the application
task and context. The task specifies the constraints and preferences between the
different performance metrics. The application context specifies a subset of the
evaluation ground truth which leads to context specific performance values and
therewith the optimal configuration for this context.

The following Section presents the related state of the art. Section 3 de-
scribes the incorporation and application of task knowledge into the metering
of computer vision algorithms and Section 4 incorporates context information.
The results of the behavior of the evaluation methodology are summarized in
Section 5.

2 State of the Art

As already Foerstner [2] pointed out performance evaluation of computer vision
algorithms is a challenging task. There are two main approaches. One is to split
the overall algorithm into several sub-tasks which can be evaluated analytically.
A typical example is Courtney [3]. The second approach is to perform an ex-
haustive evaluation regarding some ground truth with the challenge to manage
the required evaluation effort. Exemplary Appenzeller and Crowley [4] focused
on the parameter control for fair evaluation. Vogel and Schiele [5] present a
method for the optimal adaptation using performance prediction on simulated
data. From a technological point of view Everingham, Muller and Thomas [6]
developed the most similar approach. They also use a genetic algorithm to en-
able a comprehensive evaluation. The main difference is that we additionally
integrate the analyze of context dependencies.

The term of context is widely used. Some definitions can be found in Dey [7].
Winograd [8] enhances these definitions focusing on the ’use’ of context. Of
course there are approaches that directly use image context such as Torralba [9].
Paletta [10] already separates between internal and external context for improv-
ing a specific object detection algorithm. Finally Braun et. al. [11] applies context
out of the processing history as an additional cue at a voting stage.

Sharing our main objective of incorporating the context into the composition
and configuration Strat et al. [12] uses context as an ontology in a production
system to solve this task. Shekhar and colleagues [13] use a knowledge base to
search the configuration space for optimal configurations. Lombardi and Zavi-
dovique [14] defined context states that where related by a Markoff model and
Thonnat and colleagues analyze the knowledge based adaptation to scene [15]
and present selection techniques for algorithms based on a neural network and
a selection technique for parameter selection based on image feature similar-
ity [16]. Crowley et. al. [17] map user context represented by roles and relations
to system configuration using an ontology. Our approach differs to all of these
approaches by replacing the knowledge bases or ontologies by specifying the
evaluated configuration/performance mapping according to a predefined set of
contexts.
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3 Task Awareness

Task descriptions for computer vision systems can be separated into two different
parts. The first part describes the type of execution requested, the task category
or services. Typical examples are object recognition, classification, tracking and
segmentation. The second part of the description details the conditions and pref-
erences according to the application at hand. These properties can be expressed
using required performances. Examples are processing time, spatial accuracy
and success rate. These contradicting criteria are usually related using a certain
decision function.

Consider the example of an inspection or surveillance task. Most important
for these applications is to detect all positives (objects to identify). As the system
is not perfect the price for that is a reasonable number of false positives. For
example also some shadows might be reported as a material defect. On the other
hand using the evaluation for the selection of tools for manipulation, some missed
objects not being grasped (false negatives) are acceptable compared to grasping
for example into a wall (false positives). It is the task that specifies the relation
between different performance metrics.

Lets further specify the approach based on the service of object recognition.
All success metrics of the ROC [18] are reused as performance criteria (number
of true positives TP, number of false positives FP, number of true negatives TN
and the number of false negatives FN). It is assumed that the object recognizer
provide a confidence value for every object reported. The average of these confi-
dence values for true positives (confidenceTP) and false positives (confidenceFP)
are used as performance criteria, too. Further criteria are the average of the pro-
cessing time for a single image and the spatial accuracy of the center of gravity
of a single object.

Considering the configurability of algorithms and the contradicting criteria
described above, performance evaluation ends up in a search for optimal solu-
tions. Since the decision function is not known at evaluation time the optimal
configurations for all possible decision functions have to be found. Respectively
all combinations of configuration parameter values that are not optimal for any
decision function have to be filtered out.

Mathematically this can be expressed as function between the vector of per-
formance metrics and the configuration parameters which is a typical Multi-
objective Optimization Problem (MOP) formulation (see Eq.: 1).

Per formanceMetrics = f(ConfigurationParameters) (1)

A mathematical definition of the MOP can be found in [19]. Additionally all
related terms like dominance, Pareto set and Pareto front are well defined in this
book. Figure 1 presents a graphical introduction.

The semantic background of this optimization framework is based on the only
constraint for the decision function that it has a monotonic trade-off between
performance parameters. If the decision function rates more optimal values as
better (which is a very natural assumption) the Pareto set is exactly the set of all
optimal algorithm configurations (solutions). For example, this is not the case if
the Pareto front is replaced by the envelop of solutions in the performance space.
The envelop only guarantees, that for every linear weighting of performance
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Fig. 1. The performance of different configuration settings. The dominating area filters
out non-optimal solutions. All non dominated solutions constitute the Pareto front in
the performance space and the Pareto set in the configuration space.

metrics all optimal solutions are selected. In contrast, e.g., a soft real time system
which is expressed as a maximal processing time, the envelop could miss certain
optimal solutions. This behavior is demonstrated in Figure 2(a).

Finally the term of Pareto rank can be assigned to a solution [19]. This is
carried out by calculating the Pareto set. Assigning the associated solutions a
rank of 1. Removing the set with rank 1 from the solution set the next Pareto
set is calculated and a rank of 2 is assigned. All further ranks are assigned

accordingly (see Figure 2(b)).
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(b) The Pareto rank assignment accord-
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Fig. 2. The Pareto front and the related concepts of the envelop and the Pareto rank.

3.1 Application to Task Awareness

As already motivated the configuration of an algorithm can be adjusted to the
current demands of an application. As explained above, these demands are ex-
pressed by a decision function relating the different performance values to each
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other. Even if these demands change over time the configuration and there-
with the optimal algorithm behavior can be adapted. Practically this can be
performed using a lookup table that relates the application demands, the per-
formance metrics, to optimal algorithm configurations (as found by evaluation).

The same procedure can be used to select the algorithm itself. Consider a set
of algorithms that provide the same type of task (the services) but with different
performance behaviors. The task of selecting the optimal algorithm is only an
extension of the configuration selection presented before. Simply, the algorithm
instance has to be added to the configuration space. Practically this is carried
out by extending the lookup table to a yellow page like database.

Furthermore there is another option to use the evaluation data. Using Bayes
decision rules for interpreting the output of the algorithms an optimal decision
border can be calculated. The confidence value at the decision border is defined
by Equation 2 [20]. Using a task specific configuration, the decision border is
made task specific, too. Simply the distribution of the confidence values (con-
fidenceTP, confidenceFP) have to be recorded during the evaluation to enable
the calculation of p(conf | TP) and p(conf | FP). Therewith a task specific
decision mechanism is implemented.

p(conf | TP)  P(FP) ©)
p(conf | FP)  P(TP)

4 Context Awareness

The aim is to incorporate all types of information available into a system for
optimal application of existing algorithms. For the approach described in this
paper all influences on the algorithm performance behavior that are anywhere
represented in the systems knowledge can be interpreted as context.

From this context specification some general properties can be derived. Be-
cause the algorithms are treated as black boxes the context has to be applicable
from outside of the algorithm. Another important property is the impact on vi-
sual processing. Although there might be data available that can be essential for
the entire system, it can be irrelevant for the vision algorithm. Such type of data
is not appropriate as vision context. Another property a context dimension has
to fulfill is generality. E.g. if a book is opened or closed can be delivered from
outside and has a strong influence on the appearance of the book in an image.
However this context is extremely object specific and is therefore not generic.

For the tests performed the camera ego motion as an image specific context
is used. Appearance, geometry, reflectance, solidness and topology are evaluated
as object specific contexts. Further more object motion and occlusion are used
as image and object specific contexts. All of these contexts fulfill the criteria
specified above. They can be potentially delivered from outside the algorithm
and will hopefully influence the vision algorithm behavior.

Most of these context dimensions are difficult to measure in a generic fashion.
On the other hand this is not essential for the evaluation task. E.g. it will be
unlikely that the occlusion of an object to recognize will be exactly known in
advance. But a system that performs activity analyzes will have some knowledge
about the scene and can therefore derive a potential of occlusion. As a result
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all the context dimensions are quantized using only two to four values. E.g. the
values for the object topology are ’convex’, ’concave’ and ’with holes’. Further-
more the decision for context labels of ground truth images is carried out by
hand. Accordingly these decisions will have some spread. However for achieving
reasonable conclusions about the influence of context and the optimal algorithm
configurations for specific contexts these approximations are sufficient. Addition-
ally consider that a reduced set of possible context values reduces the evaluation
effort.

There are several options to integrate these context parameters into a MOP.
Using the fact that all different MOPs share the same input space (the configu-
ration parameters) the Multiple-MOP (M-MOP) mapping generates optima for
all contexts, is mathematically feasible and efficient (see [21]).

4.1 Efficient and Robust Pareto set calculation

Of course the evaluation of all possible configurations is inefficient and for con-
tinuous configuration parameters impossible. Therefore an optimization method-
ology is required. Genetic algorithms (GA) are chosen for this task because they
deal with multiple solutions per default, they need no heuristics which are not
available since the vision algorithms to evaluate are not known right now and
finally because only robust optima instead of peaky global optima are required.

There is a large set of different GA approaches for optimizing classical MOPs.
An excellent survey can be found in [19]. Recent prominent algorithms are
PAES [22], NSGA-II [23] and SPEA2 [24]. The main contradicting properties
these methods have to deal with are the convergence to the Pareto front and the
diversity of the solutions found as well as the efficiency represented using the
processing time or the number of evaluations required.

The genetic algorithm developed is inspired by Deb’s NSGA-II [23]. NSGA-
IT was selected because it realizes elitism, it requires no sharing parameter and
introduces a novel representation of the density of the population, the crowding
distance.

The extensions of E-NSGA-II developed for dealing with a multiple MOP
(M-MOP) are the extensive use of the configuration space e.g. for the density
calculation as well as the fusion of solutions over all context settings required for
the selection step of the GA. A detailed description of the developed algorithm
can be found in [25]. A summary of the performance and robustness is presented
in Section 5.

4.2 Application to Context Awareness

As already motivated at the beginning of this paper the objective is a task and
context aware configuration of vision components. The context aware evaluation
provides the database for an on-line adaptation of the configuration setting of an
algorithm. Practically this is a simple extension of the lookup table mechanism
already presented in Section 3.1. An important property in this respect is the
default context value ’-’. It expresses the independent or 'I do not know’ entry
for this context type. Therefore if only some context dimensions can be specified,
all the others will be set to this default value.
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Another important application of a context aware performance evaluation
is the detailed insight into the strength and weaknesses of the algorithm itself.
This is a very valuable contribution for the algorithm developer since he/she is
informed about the performance behaviors against different contexts.

Furthermore such an evaluation enables a fair competition between different
algorithms. The dependency on the detailed task and the context is made ex-
plicit. Performing the competition in a task and context aware manner generates
a closer insight into the performance relationships and unveils the strength and
weakness of the different processing approaches.

Finally the context awareness can be applied to the calculation of the de-
cision border according to confidence values of the algorithm. But in contrary
to the task awareness alone now also an adaptation can be performed if the
configuration is not changed at all. Consider the case where the selection and
configuration of an algorithm is carried out without any context consideration. In
this case the optimal configuration for the default context (’-") will be employed.
Using this configuration different values for TP, FP confidenceTP and confi-
denceFP according to different context settings are evaluated (p(conf | TP) =
p(conf | TP)(context)). Therewith a context specific decision border for a single
algorithm configuration can be calculated:

p(conf | TP)(context)  P(FP)(context)

p(conf | FP)(context) - P(TP)(context) 3)

5 Evaluating the Evaluator

The approach of selecting and configuring algorithms according to the task and
context at hand requires an evaluation of the algorithm’s behavior under these
conditions. During evaluation time neither the task description nor the context
are known. For this reason the optimal configurations for all possible tasks and
contexts need to be found. The establishment of a M-MOP solution technique
by the E-NSGA-II enables the efficient calculation of the required data. The
main properties of a Genetic Algorithm (GA) that need to be evaluated are the
convergence and diversity. Further more the robustness and computational effort
of the approach need to be analyzed.

The evaluation is carried out using the data of two different object recognition
algorithms. The first one is based on General Color Histograms, further called
GCH [26], where the second one uses a Support Vector Machine SVM [27] to
discriminate different image patches.

The E-NSGA-II algorithm is instantiated with the following parameters:
number of generations = 25, initial population size = 10, crossover probabil-
ity = 0.8 and mutation rate = 0.12. To show the dependency to random values
all experiments are repeated 10 times with different seed values. The evaluation
data set and the image database with the according ground truth are available
from the author.

A detailed analyzes of the evaluation results can be found in [25]. As a sum-
mary the two most important tables are presented. The first evaluation compares
the performance of the E-NSGA-II algorithm to a purely random search. This is
carried out regarding the number of evaluations, and the so called success rate.
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This value measures the rate of Pareto optimal solutions found. Table 1 points
out the gain of using the genetic optimization algorithm.

number of evaluationsHE—NSGA—H‘ random

10% 0.366]0.092198
20% 0.713]0.168085
30% 0.954|0.234752
40% 0.993]0.296454

Table 1. The mean of the evaluated success rate for the GCH method of the E-
NSGA-IT algorithm compared to a random search at different percentages of evaluations
performed regarding the number of possible evaluations.

Even though these values are not encouraging. For finding 95% of the real
optimal solutions 30% of all possible solutions have to be evaluated. However
the real benefit of the genetic algorithm is clarified by comparing not the pure
success rate but using the so called Average Pareto Rank Difference (APRD) 2.
This metric considers that a not found Pareto optimal solutions can be replaced
using a relatively well performing solution. Table 2 presents the results for the
E-NSGA-IT algorithm and a random search. The optimal APRD value is 1.

number of evaluationsHE—N SGA—H‘random

10% 2.432|2.73125
20% 1.908|2.58669
30% 1.572{2.27775
40% 1.309| 2.1864

Table 2. The mean of evaluated ’Average Pareto Rank Difference’ APRD for the
GCH method of the E-NSGA-II algorithm compared to a random search at different
percentages of evaluations performed regarding the number of possible evaluations.

By evaluating only 20% of all possible configurations by average at least the
second best solutions is found, which expresses the robustness of the evaluator.
Since the APRD relates the evaluation result to all real optima it measures
convergence and diversity at once. To prove the GA for suitability further such
analyzes with several different vision algorithms of different services have to be
performed.

6 Conclusion

Applying computer vision algorithms into a system one of the open challenges
is their selection and configuration. This paper presents a first concept based
on the performance prediction out of a comprehensive evaluation. To enable
task dependency the constraints and preferences between several contradicting

2 The idea of the APRD is to search for Pareto optimal solutions in the population
under investigation, that are probably selected instead of the real optimal solutions.
For every real optimal point that dominates at least one current solution the worst
Pareto rank of all these dominated solutions counts for the APRD. For a detailed
definition of the APRD metric please have a look at [21]
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performance metrics are taken into account. The performance evaluation be-
comes a Multi Objective Problem (MOP). Context dependency is incorporated
by extending the MOP to a Multiple Multi Objective Problem M-MOP.

The methodology presented is a first attempt to enable automatic system
generation. First results of the developed E-NSGA-II algorithm proved the use
of genetic algorithms as the underlaying optimization technique. They provide
robust and efficient optimizations. Even so many tests have to be performed to
analyze the generic suitability for the analyzes of computer vision algorithms.
Especially behavior against more recognition algorithms and several different
vision tasks need to be analyzed.

The next scientific steps in advancing this systems approach are the careful
analysis of the database used for evaluation. Although it is sufficient for the
general evaluation task, their capabilities and statistical significance in relation
to task and context has to be proven. Another open topic is the integration
of the learning step of vision methods. The number of configuration parameters
appearing during learning have the potential to overload the complete approach.
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