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Abstract. This paper presents an SVM-based algorithm for the transfer of knowl-

edge across robot platforms aiming to perform the same task. Our method ex-

ploits efficiently the transferred knowledge while updating incrementally the in-

ternal representation as new information is available. The algorithm is adaptive

and tends to privilege new data when building the SV solution. This prevents the

old knowledge to nest into the model and eventually become a possible source

of misleading information. We tested our approach in the domain of vision-based

place recognition. Extensive experiments show that using transferred knowledge

clearly pays off in terms of performance and stability of the solution.

1 Introduction

The ability to transfer knowledge between different domains enables humans to learn

efficiently from small number of examples. This observation inspired robotics and ma-

chine learning researchers to search for algorithms able to exploit prior knowledge so

to improve performance of artificial learners and speed up the learning process. In this

paper we investigate the problem of transfer of visual knowledge between robotic plat-

forms with different characteristics, engaged in the same task i.e. vision-based place

recognition. We consider a scenario where a robot, proficient in solving the task within

a known environment, transfers its knowledge to another robotic platform, which is a

tabula rasa. To tackle this problem, it is necessary an efficient way of exploiting the

knowledge transferred from a different platform as well as updating the internal repre-

sentation when new training data are available. The knowledge transfer scheme should

be adaptive and privilege newest data so to prevent from accumulating outdated infor-

mation. Finally, the solution obtained starting from a transferred model should gradually

converge to the one learned from scratch, not only in terms of performance on a task

but also of required resources (e.g. memory). This is particularly important when the

algorithm is to be used on a robot.

The problem of knowledge transfer is well known in the robotic and machine learn-

ing communities. Thrun and Mitchell [1, 2] studied the issue of exchanging knowledge

related to different tasks in the context of artificial neural networks and argued for the

importance of knowledge-transfer schemes for lifelong robot learning. Several attempts

to the problem have also been made from the perspective of Reinforcement Learning,

including the case of transferring learned skills between different RL agents [3, 4].
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(a) Robot A (b) Robot B

Fig. 1. The two mobile robot platforms used for image acquisition as well as pairs of images

acquired with both devices at a similar pose. The interest points detected in the images using the

Harris-Laplace detector are marked with yellow circles, and the radius of each circle indicates

the scale at which the point was detected.

This paper focuses on an algorithm that allows to perform transfer of knowledge

represented in form of a model trained using the Support Vector Machines. The algo-

rithm was thoroughly tested in the domain of vision-based place recognition, where the

knowledge was exchanged between two mobile robot platforms. Since it is desirable to

perform an update of the internal representation as soon as new data are available, we

investigated the behavior of the algorithm when the model was trained using a small

number of examples, and only one class at a time. Our experimental evaluation showed

that the system exploits successfully the prior knowledge, obtaining a remarkable boost

in performance compared to a model built from scratch in analogous conditions.

This paper is organized as follows: Section 2 gives a definition of the problem and

discusses the main issues related to the transfer of knowledge. Then, Section 3 presents

our approach. Sections 4 and 5 describe the experimental setup and report results of our

experimental evaluation. Conclusions are drawn in Section 6.

2 Problem Statement

Our focus is on a transfer of visual knowledge between two agents having different

characteristics. Specifically, we consider the case where knowledge related to the prob-

lem of visual-based place recognition is transferred from Robot A to Robot B. The

main difference between the two platforms lies in the height of the cameras (see Fig. 1).

Both robots are engaged in the same task and operate in the same environment. Their

recognition system is based on the SVM classifier, thus they share the same knowledge

representation. The aim is to efficiently exploit the knowledge acquired e.g. by Robot A

so to boost the recognition performance of Robot B. Obtaining robustness to visual

variations in a complex scenario can be a costly process; thus, it is of great importance

the ability of exchanging skills that, once learned, could be valuable to other devices

operating in the same environment.
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The challenges in the transfer of knowledge will come from:

(a) Differences in the parameters of the two platforms The cameras are mounted at

two different heights, thus the informative content of the images acquired by the two

platforms is different (see Fig. 1). Because of this, the knowledge acquired by one

platform might not be helpful for the other one or, in the worst case, it might constitute

an obstacle.

(b) Room by room/frames by frames knowledge update The model from Robot A should

be adapted to the needs of Robot B as soon as new data are available. This can be done

in a room-by-room (class-by-class), or frames-by-frames fashion; both scenarios are at

risk of unbalanced data with respect to the class being updated. Note that these scenarios

differ from the “off-line” incremental learning scenario described in [5], where the robot

updates its model after having acquired data from the whole environment.

(c) Growing memory requirements In case of SVMs, the model is parametrized by a

subset of training samples. As a result, building on top of an already trained classifier

might lead to a solution that will be much more demanding in terms of memory usage

and computational power than the one learned from scratch [5].

3 The Algorithm

The following section provides a short description of the place recognition system used

as a framework for our experiments and describes our approach to the transfer of knowl-

edge problem. The place recognition system implemented on both mobile robots is

based on the Support Vector Machine classifier, combined with local image features

computed using a Harris-Laplace detector [6] and the SIFT descriptor [7]. The local

descriptors are used as input to SVM via the match kernel presented in [8]. Preliminary

experiments showed that the local features are more suitable for the transfer of knowl-

edge in our scenario than global features, like composed receptive field histograms [9],

which were successfully used for robust place recognition in a similar framework [10].

This is primarily due to the fact that the local features are generally more robust to

occlusions and viewpoint changes which is a desirable property in our setting.

The knowledge (i.e. the model) of the SVM classifier is given in form of a set of sup-

port vectors, their corresponding Lagrange multipliers αi, and a bias factor b [11]. This

model representation is the same for both robots, which make the transfer of knowledge

possible. Once the knowledge from the platform Robot A is loaded into the memory of

the platform Robot B, the system begins to update this support vector model using the

data acquired by its own sensor. This update procedure is based on the fixed-partition

incremental SVM algorithm [12]. More specifically, the decision function transferred

from Robot A to Robot B will be

f A(x) = sgn


MA∑

i=1

α
A
i yA

i x
A
i · x + bA

 , (1)

where xi denotes support vectors and yi ∈ {−1,+1} their class labels (for multi-class

extensions we refer the reader to [11]). As Robot B is shown the environment, it will
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Fig. 2. A diagram illustrating the data flow in the knowledge-transfer system.

acquire consecutive batches of data

T
B
k =

{
(x

B
j , y

B
j )
}N

j=1
.

Each batch of data corresponds to a set of N labeled feature vectors extracted from a

part of an image sequence. According to the fixed-partition incremental SVM method

[12], the model update is performed by retraining the classifier on support vectors from

the previous model combined with new training data. Thus, the training data for the first

model update will be

T1 = {T
B
1 ∪ SV

A}, SV
A
= {(x

A
i , y

A
i )}

MA

i=1
,

where SV
A are the support vectors of the decision function (1), i.e. the transferred

knowledge from Robot A. The new classification function will be:

f B(x) = sgn


M̂A∑

i=1

α̂
A
i yA

i x
A
i · x +

MB∑

i=1

α
B
i yB

i x
B
i · x + bB

 , M̂A ≤ MA. (2)

The same procedure is followed for every successive update of the model used by

Robot B.

As the system keeps updating the transferred representation, it adapts the model

to its own perception of the environment. It would be desirable that the system could

progressively substitute support vectors from the knowledge model of Robot A with

support vectors acquired by Robot B. To promote this behavior, while at the same time

reducing the memory requirements, we applied, after each incremental update, the sup-

port vector reduction algorithm proposed by Downs et al [13]. The method consists in

identifying the support vectors which are linearly independent, and rewrite the SVM

decision function as a linear combination of those vectors, and those vectors only. The

Lagrange multipliers are recomputed accordingly, achieving a reduction in the number

of support vectors while preserving the exact solution. Fig. 2 shows our framework for

transfer of knowledge. In order to privilege information coming from the platform cur-

rently in use, we imposed to the algorithm to discard only the support vectors that were

linearly dependent and came from the previous platform. This scheme speeds up the

turnover of stored support vectors, while preferring newest data and at the same time

preserving relevant information. Thus, our approach favors adaptation while reducing

the memory requirements, and discards outdated knowledge which might otherwise act

as noisy information.
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Fig. 3. Pictures taken from the IDOL2 database illustrating the appearance of the five rooms from

the point of view of both robotic platforms.

4 The Database

For our experiments we used the IDOL 2 database (Image Database for rObot Localiza-

tion 2, [14]) which contains 24 image sequences acquired using a perspective camera

mounted on two mobile robot platforms. The acquisition was performed within an in-

door environment consisting of five rooms of different functionality: One-person Office

(OO), Two-persons Office (TO), CoRridor (CR), KiTchen (KT) and Printer Area (PA).

The sequences were acquired under various weather and illumination conditions (sunny,

cloudy, and night) and across a time span of six months. Thus, this data capture natural

variability that occurs in real-world environments because of both natural changes in the

illumination and human activity. Note that the focus of our work here is to study how to

transfer structured knowledge across platforms, rather than handling different types of

visual variations. Our choice of the database is thus purely due to its dimension, which

allowed us to test extensively our approach. For further details on the database, we refer

the readers to [14].

Both mobile robot platforms, the PeopleBot Robot A and the PowerBot Robot B,

are equipped with the pan-tilt-zoom Cannon VC-C4 camera. As shown in Fig. 1a&b,

the cameras are mounted at different heights. On Robot A the camera is located 98cm

above the floor, whereas on Robot B its height is 36cm. Furthermore, the camera on

Robot B is tilted up 13◦, so to reduce the amount of floor captured in the images. Fig. 1

shows some sample images from the database acquired by both robots from very close

viewpoints, illustrating the difference in visual content. These images were acquired

under the same illumination conditions and within short time spans.

The image sequences in the database are divided as follows: for each robot plat-

form and for each type of illumination conditions, there were four sequences recorded.

Of these four sequences, the first two were acquired six months before the last two.

This means that, for each robot and for every illumination condition, we always have

two sequences acquired under similar conditions, and two sequences acquired under

very different conditions. In all our experiments, we will always use those sequences

acquired under similar conditions, one as training set and the another one as test set.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
           Proceedings of the 5th International Conference on Computer Vision Systems (ICVS 2007) 
          Published in 2007 by Applied Computer Science Group, Bielefeld University, Germany, ISBN 978-3-00-020933-8 
          This document and other contributions archived and available at: http://biecoll.ub.uni-bielefeld.de



5 Experiments

We conducted two series of experiments to evaluate our system. In all the experiments,

we benchmarked against a system not using any prior knowledge. The evaluation was

performed using our extended version of the libsvm library [15]. The SVM and kernel

parameters were determined via cross validation. In view of the fact that the number

of acquired images varied across rooms, each room was considered separately during

the test experiments. The overall classification rate was then computed as an average,

to which the results from each room contributed equally.

Updating Room by Room In the first series of experiments, the system was updated

incrementally in a room by room (i.e. class by class) scenario. The system was trained

incrementally on one sequence; the corresponding sequence, acquired under roughly

similar conditions, was used for testing. The prior-knowledge model was built from

one image sequence, acquired under the same illumination conditions and at close time

as the training one, but using a different platform. As there are five classes in total,

training was performed in 5 steps. In the no-transfer case, the system needed to build

the model from scratch, and thus needed to acquire data from at least two classes. In

this case, training on each sequence took 4 steps.

Building on top of knowledge acquired from another platform implies a growth in

the memory requirements. To evaluate this behavior in relationship to its effects on per-

formance and compare fairly to the system trained without a prior model, we incremen-

tally updated the model without transferred knowledge on another sequence acquired

under conditions similar to that of the first training sequence. This experiment makes it

possible to evaluate performance and memory growth when both systems are trained on

two sequences. The main difference is that in one case both sequences were acquired

and processed by the same platform; in the other case, one sequence was acquired and

processed by a different platform. We considered different permutations in the rooms

order for the updating; for each permutation, we considered 6 different orderings of the

sequences used as training, testing, and prior-knowledge sets. Due to space reasons,

we report only average results for one permutation, together with standard deviations.

Fig. 4a&b report the experimental results obtained at each step, for both systems, in-

cluding the further steps of the no-transfer system. Fig. 4c&d, give a detailed analysis

of the classification rate and the number of stored support vectors obtained at each step

of the incremental procedure.

We can see that, for both approaches, the system gradually adapts to its own percep-

tion of the environment. It is clear that the knowledge-transfer system has a great advan-

tage in terms of performance over the no-transfer system at the first steps. However, it is

interesting to note, that even when both systems have been updated on a full sequence

(CR1, Fig 4a), the knowledge-transfer system still maintains an advantage in perfor-

mance. Considering the differences between the two platforms, and that the transferred

knowledge model was built on a single sequence, this is a remarkable result. It can

also be observed from Fig. 4d that the SV reduction algorithm facilitated the decay of

knowledge from the other platform (in the first incremental step, we did not perform the

reduction), while the knowledge acquired by its own sensor gradually becomes the main
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(a) Classification rates at each training step. (b) Number of support vectors at each step.
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(c) Detailed comparison of the performance (d) Detailed comparison of the number of

of the system at each training step. stored support vectors at each step.

Fig. 4. Average results obtained for the system incrementally trained with and without transfer of

knowledge in the room by room fashion. Fig. 4a&b compare the final recognition rates and the

total number of support vectors for both cases. Fig. 4c&d present a detailed analysis: classification

rates obtained for each of the rooms and the amount of support vectors in the final model that

originate from the transferred knowledge. In all the plots, the first step “KN.” corresponds to the

results obtained for the transferred knowledge before any update was performed.

source for the model. As the no-transfer system continued to learn one additional se-

quence incrementally, its memory growth eventually exceeded the knowledge-transfer

case (see Fig 4b). Although the model was built on two sequences acquired by the

same platform, the knowledge-transfer system still obtains a comparable performance.

We conclude that the transfer of knowledge, in a room by room updating scenario, acts

as an effective boosting of performance, without any long-term growth of the memory

requirements.

Updating Frames by Frames The second series of experiments explored the behavior

of the system in a frames by frames updating scenario, which can be seen as an on-

line incremental learning scenario. Here, for each incremental update, we used a certain

number of consecutive frames taken from the training image sequence. Again, the sys-

tem was trained incrementally on one sequence, and a corresponding sequence was

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
           Proceedings of the 5th International Conference on Computer Vision Systems (ICVS 2007) 
          Published in 2007 by Applied Computer Science Group, Bielefeld University, Germany, ISBN 978-3-00-020933-8 
          This document and other contributions archived and available at: http://biecoll.ub.uni-bielefeld.de



0 5 10 15 20 25 30 35 40

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

Training Step

C
la

s
s
if
ic

a
ti
o

n
 R

a
te

 [
%

]

 

 

 No transfer

 Knowledge transfer

0 5 10 15 20 25 30 35 40

0

300

600

900

1200

Training Step

N
u

m
b

e
r 

o
f 
S

to
re

d
 S

u
p

p
o

rt
 V

e
c
to

rs

 

 

 No transfer

 Knowledge transfer

(a) Classification rates at each training step. (b) Number of support vectors at each step.
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(d) Number of stored support vectors of incremental experiment with and without

knowledge-transfer at each step.

Fig. 5. Average results obtained for the system incrementally trained with and without transfer of

knowledge in the frames by frames fashion. Fig. 5a&b compare the final recognition rates and

the total number of support vectors for all the experiments. Fig. 4c&d present detailed results for

one representative experiment: classification rates obtained for each of the rooms as well as the

amount of support vectors in the final model that originate from the transferred knowledge. The

labels below each bar indicate the batch of data used for the incremental update. Again, the first

step labeled as “KN.” corresponds to the results obtained for the transferred knowledge before

any update was performed.
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used as a test set. We examined the performance of the system for a case when updat-

ing was performed using 30 frames per step4. Thus, for each experiment, it took more

than 30 incremental steps in total to complete a sequence. The prior-knowledge model

was built using two complete sequences acquired by the other platform, under the same

illumination conditions and very close in time. Again, we benchmarked against the sys-

tem not using any prior knowledge. In this case, in order to fulfill the requirement of

training using at least 2 classes, the first training set consisted of all the images captured

in the first room plus the first 30 frames captures in the second room. In consequence,

the full training process required five to six less steps than in case of equivalent ex-

periments using the knowledge-transfer scheme. The experiment was repeated 6 times

for different orderings of training sequences. Since the number of training steps varied

(due to a different number of images in each sequence), we report all the results sepa-

rately. Fig. 5a&b report the amounts of stored support vectors and classification rates at

each step, for all the experiments. This shows the general behavior for both approaches.

Fig. 5c&d present results for one of the 6 experiments, so to allow a detailed analysis.

By observing the classification rates obtained at each step in both cases, we see that

the advantage of the knowledge-transfer scheme is even more visible here than for the

room by room updating scenario. This might be due to the fact that some of the training

sets used for the no-transfer case are highly unbalanced. We can observe from Fig. 5c

that the performance of the system for previously learned rooms can drop considerably

when a new batch of frames is loaded; this is not the case for the knowledge-transfer sys-

tem. The twelfth step, when the system was updated with frames from the two-persons

office (TO3, Fig. 5c), is a typical example. Note that this is a general phenomenon

present, although less pronounced, also in the room by room updating scenario. Our

interpretation is that the model of the prior-knowledge contains information about the

overall distribution of the data. This helps to find a balanced solution when dealing with

non-separable instances using soft-margin SVM [11]. As a last remark, we can note that

due to use of the SV reduction algorithm the knowledge from the transferred model is

gradually removed over time (see Fig. 5d).

Discussion The presented results provide a clear evidence of the advantage of using

transferred knowledge across platforms for visual place recognition. The system using

the transferred model is able to perform recognition, with a performance well above

chance, after having acquired just a small amount of information through its own sen-

sor. By starting to adapt the transferred model to its own perception, performance keeps

growing steadily and reaches very high values (above 90%) much earlier than a simi-

lar system operating without transferred knowledge. Moreover, adapting a transferred

model has shown to pay off considerably in the case of a fast update of the internal

representation, where a building from scratch strategy is subject to fluctuations in per-

formance, due to temporary unbalancing of the data. Last but not least, our experiments

showed that the SV reduction algorithm, applied before every incremental step, pro-

vides an effective way to facilitate the decay of knowledge from the previous platform,

as the system learns more about the environment through its own acquisition device.

4 Experiments conducted for 10 and 50 frames per training step gave analogous results, and for

space reasons are not reported here.
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6 Conclusion

This paper addressed the problem of visual knowledge transfer across robot platforms.

As a starting point on discussing this issue, we considered the case of robots having dif-

ferent characteristics, but engaged in solving the same task. We proposed an framework,

based on the SVM classifier, able to adapt the transferred model to the new information

in an incremental fashion. Extensive experiments show clearly the effectiveness and

promise of our approach.

Future work will focus on adaptation using unlabeled data (semi-supervised sce-

nario), on integrating and updating multiple visual cues and multiple sensors informa-

tion, and on on-line kernel and feature selection.
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