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Abstract. This article describes an FPGA-based implementation of the
Harris-Affine feature detector introduced by Mikolajczyk and Schmid [1,
2]. The system is implemented on the Transmogrifier-4, a prototyping
platform that includes four Altera Stratix S80 FPGAs and NTSC/VGA
video interfaces. The system achieves a speed of 90–9000 times the speed
of an equivalent software implementation, allowing it to process standard
video (640 × 480 pixels) at 30 frames per second.

1 Introduction & Previous Work

Feature detectors are algorithms that can locate and describe points or regions
of interest in an image. The idea is that if a structure in an image can be
described by a limited set of features, and this set is robust to changes in viewing
conditions, then the features can be used to identify and match the structure
across different images. Most modern feature detectors can trace their roots
back to the Harris corner detector [3], which selects image regions that have
sufficient image-gradient energy in orthogonal directions. While these features
are not scale invariant, subsequent advances such as SIFT features [4, 5], scale-
space representations [6] and affine-covariant approaches [2] search for maximal
responses over different scales to provide scale invariance. Rotational invariance
is usually achieved with a signature (or descriptor) that identifies the features
and normalises it with respect to a dominant orientation.

As the complexity of the algorithm increases, so does the amount of time and
computer resources required to perform it. For this reason, feature detection al-
gorithms are being ported to integrated circuits such as Field-Programmable
Gate Arrays (FPGAs), where the inherent parallelism of the image process-
ing operations can be exploited to increase the computational speed. Among
hardware circuits, FPGAs are attractive because they can be reprogrammed to
implement multiple applications. This allows designers to test the system under
real conditions and implement modifications easily, considerably shortening the
development time of the hardware system.

A number of hardware approaches have been reported. There are several
FPGA-based Harris corner detectors [7, 8], and an FPGA-based implementation
of SIFT features is indicated in [9], although the implementation details are not
public. These detection algorithms are amenable to hardware implementation
due to the lack of an iterative process. Our design addresses the implementation
of affine-covariant detectors and the issue of iteration.
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2 The Harris-Affine Feature Detector

The Harris-Affine detector combines a multiscale version of the Harris corner
detector with an iterative procedure for computing the affine shape of an image
region in the neighbourhood of the features. This combination results in features
that adapt to significant affine transformations caused by changes in viewpoint.
The multiscale Harris detector computes the scale-normalized second moment
matrix µ(x, σI , σD) at each pixel in the image to describe the variance of the
image intensities around the pixel at location x:

µ(x, σI , σD) = σ2
D g(σI) ∗

[

L2
x(x, σD) LxLy(x, σD)

LxLy(x, σD) L2
y(x, σD)

]

(1)

where σD and σI are the differentiation and integration scales, and Lx(x, σD)
and Ly(x, σD) are the first derivatives of the image at x in the x- and y-directions
computed with a Gaussian derivative at scale σD.

The algorithm finds points at which the second moment matrix has two large
eigenvalues. The explicit computation of the eigenvalues is avoided by using the
trace and determinant of µ(x, σI , σD) [3] to evaluate the cornerness function,

cornerness = det(µ(x, σI , σD)) − α trace2(µ(x, σI , σD)), (2)

where α is a positive parameter usually in the range 0 ≤ α ≤ 0.25.
At each scale (σI , σD), a point is selected as a corner if its cornerness is a

maximum in its 8-point neighbourhood. The algorithm then selects the charac-
teristic scale of the feature as the scale that achieves a maximum value of the
Laplacian function

|LoG(x, σI)| = σ2
I |Lxx(x, σI) + Lyy(x, σI)|. (3)

The preliminary features obtained with this Harris-Laplace detector [10] are
then refined to account for affine transformations in the image. In this iterative
process, image regions around the features are normalized (warped) until the
second moment matrix computed at the feature location has equal eigenvalues.
The scale and location of each feature is recomputed at each iteration based on
the normalized region instead of the original image.

2.1 Algorithm

The Harris-Affine algorithm is initialized with points extracted with the mul-
tiscale Harris detector. For each preliminary feature at location x(0) and scale
σI

(0) the algorithm applies the following procedure:

1. Initialize the shape adaptation matrix U to the identity matrix: U (0) = I.

2. Normalize an image region W (xw) centred at x
(k−1)
w = U (k−1)−1

x(k−1),
where the superscript (k) denotes the kth iteration.

3. Select the integration scale σI
(k) at the point x(k−1) that maximizes the

absolute value of the Laplacian (Equation 3).
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4. Select the differentiation scale σD
(k) = s σI

(k) that maximizes the isotropy

ratio Q = λmin(µ)
λmax(µ) , where s ∈ [0.5, . . . , 0.75] and µ = µ(x

(k−1)
w , σI

(k), σD
(k))

is the second moment matrix at the point x
(k−1)
w computed from the image

region W .

5. Detect the spatial localization x
(k)
w of a maximum of the Harris cornerness

function (Equation 2) around x
(k−1)
w and compute the location of the feature

in the original image domain x(k):

x(k) = x(k−1) + U (k−1) (x(k)
w − x(k−1)

w ) (4)

6. Compute the inverse square root of the second moment matrix at x
(k)
w : µ

(k)
i =

µ−

1

2 (x
(k)
w , σI

(k), σD
(k)).

7. Update the shape adaptation matrix to U (k) = µ
(k)
i · U (k−1) and normalize

U (k) so that λmax(U (k)) = 1.
8. Evaluate convergence and divergence ratios,

convergence ratio = 1 −
λmin(µ)

λmax(µ)
< ǫC (5)

divergence ratio =
λmax(U)

λmin(U)
< ǫD. (6)

The process converges when the matrix µ is sufficiently close to a rotation
matrix, or equivalently, when its eigenvalues λmax(µ) and λmin(µ) are almost
equal (ǫC ≈ 0.05). Divergence can be measured from the eigenvalues of U to
discard features with deformations that are too eccentric (e.g., ǫD ≈ 6).

3 Hardware Design

The feature detector was implemented on the Transmogrifier-4 (TM-4), a de-
velopment platform developed at the University of Toronto that contains four
Stratix S80 FPGAs [11]. Figure 1 shows the high-level architecture of the detec-
tor.

At the front end, the Video Input module receives NTSC signals from a CCD
camera, performs frame de-interlacing and color conversion, and forwards pixels
corresponding to a 640 × 480 grayscale image to the processing stages of the
detector. The core of the detector consists of the same two main stages present in
the algorithm. The first stage is a Multiscale Harris corner detector that provides
candidate feature points at three scales specified by the user. The second stage
refines the location, scale and shape matrix of the candidate features, and is
equivalent to the iterative portion of the algorithm, with the exception that the
loops have been unrolled into individual identical modules (One Iteration) to
provide greater throughput.

First-in-first-out (FIFO) buffers store information about candidate feature
points after the Multiscale Harris module and after each iteration. Because pre-
liminary feature points are discarded along the process, the FIFO buffers store
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Fig. 1. High-level architecture of the feature detector

only the information that corresponds to features that are either still being ana-
lyzed or have been accepted as final feature points. This shortens the processing
latency of a frame by allowing the One Iteration modules to operate only on
non-discarded feature points. In addition, the MH FIFO buffer separates the
clock domain of the Multiscale Harris stage which runs at 12Mhz from the clock
domain of the pipeline of iterations, which runs at 60Mhz.

The location, scale and shape transformation matrix produced by the last
iteration block are buffered in a Feature List which can be accessed from a Unix
terminal. The locations are also marked in a binary Feature Map, so that the
features can be overlaid on the video stream and displayed on a monitor via the
Video Output module.

3.1 One Iteration Module

The One Iteration module (Figure 2) is the most complex of the two processing
stages. The Normalize Window module performs the affine normalisation process.
A 25 × 25 region around the feature at location x is warped by an affine trans-
formation U . Since in general the transformation gives non-integer coordinates,
the grayscale values for the warped image are computed by bilinear interpola-
tion of the grayscale values in the original image. This interpolation creates a
bottleneck in the system since four pixels have to be retrieved from a memory
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Fig. 2. One Iteration module

buffer for each of the 625 pixels that form the warped image. For this purpose,
the original image is de-interlaced along the rows and columns and stored into
four different buffers, so that the four pixels required for the interpolation can
be accessed in a single clock cycle.

The resulting warped image W is forwarded to the next two modules which
compute the integration and differentiation scales. The Integration Scale module
evaluates the Laplacian function (Equation 3) at three scales: the current inte-
gration scale and the two adjacent scales, and selects the one that results in the
maximum value of the Laplacian.

The Differentiation Scale module computes the eigenvalues of the second mo-
ment matrix µ (Equation 1) at three scales. The selected differentiation scale is

the one that produces an isotropy ratio Q = λmin(µ)
λmax(µ) that is closest to 1.

The Spatial Localization module computes the value of the cornerness function
(Equation 2) at each location in the 8-point neighbourhood of the current feature
and updates the location x to the location of the point that achieves the largest
cornerness value.

The Shape Matrix module evaluates the inverse square root of the second mo-
ment matrix and uses it to update the shape adaptation matrix U . Fortunately,
µ is a 2 × 2 symmetric matrix, which simplifies the computation of the inverse
square root considerably.

The final step in the iteration is to evaluate the convergence and divergence
of the feature. The feature is said to have converged if the ratio of the minimum
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Table 1. Processing times for the hardware and MATLAB implementations for 2
iterations

Cornerness # of preliminary Time (s) Ratio of software

threshold features software hardware time to hardware time

500 11307 1.1057 × 103 0.1232 8.8765 × 103

1000 10768 1.0394 × 103 0.1173 8.8583 × 103

2000 9828 0.9558 × 103 0.1071 8.9200 × 103

3000 9016 0.8824 × 103 0.0983 8.9715 × 103

4000 9371 0.8267 × 103 0.0914 9.0480 × 103

5000 7821 0.7782 × 103 0.0854 9.1114 × 103

6000 7332 0.7373 × 103 0.0801 9.2034 × 103

7000 6905 0.7056 × 103 0.0755 9.3469 × 103

8000 6577 0.6738 × 103 0.0719 9.3666 × 103

9000 6280 0.6461 × 103 0.0687 9.4015 × 103

10000 6009 0.6230 × 103 0.0658 9.4705 × 103

12000 5588 0.5876 × 103 0.0612 9.5970 × 103

14000 5230 0.5562 × 103 0.0573 9.6994 × 103

to maximum eigenvalues of µ is close to 1 and it is said to have diverged if the
ratio of the eigenvalues of U is larger than a user-specified threshold.

It is worth noting that a single One Iteration module could be used to repeat-
edly process features by feeding the results of one pass through the module back
into the module. This limits the throughput of the system, but allows for scal-
ability in cases where there are not enough FPGA resources to pipeline several
iteration blocks.

4 Results

The hardware system was compared to a MATLAB implementation of the algo-
rithm in terms of speed and accuracy of the results. Table 1 shows the processing
times for the hardware system and the floating-point MATLAB implementation
for the case of the graffiti image 3(a). The times are quoted beside the cor-
responding value of the cornerness threshold parameter used to obtain them,
and the number of preliminary features detected in the Multiscale Harris stage
for these thresholds. The processing times for the floating-point implementation
and the number of preliminary features were measured directly from MATLAB
running on a 2.66 GHz Pentium IV processor with 4 GB of memory. The pro-
cessing times for the hardware system were computed for clock rates of 12 MHz
(for the Multiscale Harris module) and 60 MHz (for the iteration blocks).

Table 1 shows that the hardware implementation achieves a speed that is
on average 9.2 × 103 times faster than the speed of the MATLAB version. In
general, MATLAB implementations are not the most efficient in terms of speed,
however the majority of operations involved in the feature detector algorithm
are matrix operations, which are highly optimized in MATLAB. For this reason,
it is expected that software implementations in other languages, like C, would
improve the performance of the MATLAB version by up to a factor of 100.
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(a) graffiti (b) cars

Fig. 3. Test images

Taking this improvement into account, the hardware implementation achieves
an increase in speed of at least two orders of magnitude.

The current software implementation made available by Mikolajczyk [12]
can process 1299 preliminary points (identified as “cgood” in the output of the
executable file) in 3.55 seconds, to produce 1033 features. In this test, we used
the same image and computing platform as those used to obtain the results
in Table 1. Unfortunately, the number of iterations and other implementation
details are not available to draw a precise comparison between this software
implementation and the hardware system. However, a rough estimate is that the
hardware implementation is 100 times faster than this software version for the
same number of detected points.

The fixed-point representation and other algorithmic simplifications used in
the hardware implementation of the feature detector introduce errors in the lo-
cation, scale and shape of the detected features. To provide a quantitative mea-
sure of these errors, the results obtained from ModelSim simulations of two test
images, shown in Figure 3, were compared against the results obtained from pro-
cessing the same images with the floating-point MATLAB implementation. Each
image was analyzed at three scales: σN0 = 1 pixel, σN0 = 2 pixels and σN0 = 4
pixels.

Figure 4 shows the distribution of Euclidian distances between the features
detected in hardware and the MATLAB features at the closest spatial location.
The majority of hardware features are located within 3 pixels of a software
feature. The tails of the histograms correspond to hardware features that did
not have a match among the software features.

Figure 5 presents the distribution of the absolute value of the difference be-
tween the scales of corresponding features, for each test case. The histograms
show that the errors in scale are small, in particular when compared to the the
step between scales of ε = 1.125, and can be reasonably attributed to quantiza-
tion errors in the hardware implementation.

Table 2 lists the total resource utilization per FPGA. The numbers in paren-
thesis indicate the percentage of the total resources of that kind available in
one Stratix S80 FPGA. For reference, a Stratix S80 FPGA includes 79040 logic
elements, 176 9-bit DSP elements and 7427520 bits of memory.
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Fig. 4. Distribution of Euclidian distances between matching hardware and software
features in the Graffiti (left) and Cars (right) image, for σN0 = 1 pixel (top), σN0 = 2
pixels (center) and σN0 = 4 pixels (bottom)

5 Conclusions

Implementations of image-processing tasks in integrated circuits can often achieve
significantly faster processing times than implementations of the same tasks in
general-purpose processors, even when clocked at much lower rates. The FPGA-
based feature detector presented in this paper, for example, achieves process-
ing speeds 90-9000 times the speed of an equivalent software implementation.
Among integrated circuits, FPGAs offer a good compromise between area, speed
and flexibility, since they can be easily reprogrammable.

The Harris-Affine algorithm relies to a great extent on the accuracy of inter-
mediate results to achieve convergence of the location, scale and shape matrix of
a feature point. Therefore, the main challenge when implementing the algorithm
in hardware is to balance the need for numerical precision with an efficient use
of the available hardware resources. Another important consideration in the de-
sign of the system is that the amount of data that needs to be processed by the
iterative portion of the algorithm can vary significantly depending on the nature
of the images being processed and the value of the input parameters. This poses
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Fig. 5. Distribution of errors in scale between corresponding hardware and software
features in the Graffiti (left) and Cars (right) images, for σN0 = 1 pixel (top), σN0 = 2
pixels (center) and σN0 = 4 pixels (bottom)

a challenge from the hardware perspective because the system has to be capable
of handling both very long and very short delays.

One of the goals in the design was to allow for scalability. Whenever possible
the bit-widths of the parameters and intermediate signals have been defined as
generic parameters, to allow for easier modification in case a different precision
is required. As well, modules that operate on several scales in parallel consist of
identical structures that are “stacked”, so that more scales can be added with
as few modifications as possible if more hardware resources become available.
Similarly, the design can be easily modified to process images of different reso-
lutions, since only the line buffers in the Multi-scale Harris module depend on
the image width. This translates to processing times that depend on the image
size as O(N), where N is the number of pixels in the image. More importantly,
this design addresses the implementation of an iterative process and presents a
highly-reprogramable functional block (One Iteration) that can be repeated in a
pipelined architecture or used in isolation within a feedback loop depending on
the available hardware resources.
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Table 2. Resource utilization per FPGA

FPGA Logic elements Memory bits DSP elements

FPGA 0 38256 (48%) 3527389(47%) 126 (72 %)

FPGA 1 55028 (70 %) 5045677 (68%) 112 (64%)

FPGA 2 37036 (47 %) 4159329 (56%) 25 (14%)

FPGA 3 70159179 (89 %) 4437738 (60%) 117 (66%)

To the authors’ knowledge, an implementation of a complex iterative algo-
rithm in reprogrammable hardware has not been presented before in the com-
puter vision literature. As such, this contribution aims to expand the under-
standing of the capabilities of reprogrammable hardware in real-world computer
vision applications, where the size, speed and clock rates of a general-purpose
processor may not be convenient.

The authors would like to thank the Canadian Foundation for Innovation,
Ontario Centres of Excellence and Altera Corporation for financial support.
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