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Abstract. Today’s object categorization methods use either supervised
or unsupervised training methods. While supervised methods tend to
produce more accurate results, unsupervised methods are highly attrac-
tive due to their potential to use far more and unlabeled training data.
This paper proposes a novel method that uses unsupervised training to
obtain visual groupings of objects and a cross-modal learning scheme
to overcome inherent limitations of purely unsupervised training. The
method uses a unified and scale-invariant object representation that al-
lows to handle labeled as well as unlabeled information in a coherent
way. One of the potential settings is to learn object category models
from many unlabeled observations and a few dialogue interactions that
can be ambiguous or even erroneous. First experiments demonstrate the
ability of the system to learn meaningful generalizations across objects
already from a few dialogue interactions.

Key words: object categorization, cross-modal learning, incremental
and interactive learning

1 Introduction

In computer vision, impressive progress has been made recently not only for ob-
ject identification but also for object categorization in real-world scenes. Quite
interestingly, these methods use different learning methods ranging from super-
vised methods [13], over weakly supervised methods [5] to unsupervised methods
[18,8], and also ranging from generative to discriminant learning methods [6].
Following common practice today these systems are evaluated on predefined
training and test sets enabling direct comparisons. For a cognitive vision system
however it is highly important that models and representations are flexible and
evolvable over time enabling continuous or even life-long learning. This goal is
not only much harder to achieve but it is also more difficult to evaluate and
compare and consequently it is not clear how the above mentioned approaches
could be extended to deal with this more challenging scenario.

As we understand cognitive vision systems one of their most important and
fundamental abilities is to evolve over time by actively and passively acquiring
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Fig. 1. System overview.

new knowledge and incorporating that knowledge into the system. While there
exists a wide range of sources of knowledge, in this paper we focus on the ability
to acquire new knowledge through dialogue interactions with humans. In this
scenario we can identify a number of requirements a cognitive vision system
needs to fulfill. First, to enable interactivity, the representations and models of
the systems need to enable incremental processing and learning. Secondly and
in order to test and evaluate such systems all processing should be done in
real-time or at least at speeds that allow real interactivity. Third, as humans
will use language to interact with the system, the learning mechanisms have
to allow cross-modal learning from vision and language. And forth the learning
algorithms should enable to deal with ambiguous and even erroneous input both
from vision and language.

In the following, we present an approach for cross-modal learning of visual
categories which integrates language and vision input. Language provides ”scene
descriptions”, describing objects and their spatial relations in a given scene,
which provides a top-down description which is then related to the bottom-up
generalizations of the vision system. The scene descriptions can be interpreted on
ontologically rich knowledge representations, which make it possible to use on-
tologies to mediate between linguistically expressed meaning, and the categories
formed in the visual system. Using the hierarchical structure of ontologies, and
the possibility to perform ontological inference over instances on these ontologies,
provides a more general and better scalable approach to ”visual grounding” of
language than provided by the string-based approach proposed in [17], or earlier
ontology-based approaches such as [10].

System overview. Figure 1 shows an overview of the presented system, which
is tighly related to the structure of this paper. Section 2 describes the vision sys-
tem which is decomposed into low-level functionality (feature extraction, object
discovery and object representation (Sec. 2.1)), the unsupervised visual grouping
step (Sec. 2.2) and the categorization procedure (Sec. 2.3). Section 3 describes
the language system that parses an utterance to a logical form. Section 4 ex-
plains the spatial reasoning processes that associate the expressions with the
visual observation which are then used to probabilistically associate labels to
the clusters obtained from visual grouping. Section 5 illustrates the functions of
the integrated system and provides empirical evidence for our claims.



2 Vision Sub-System

The description of the vision sub-system is divided into three parts. First, the
low-level functionalities are described, that extract local image features, discover
object centers and extract a scale-invariant object representation at the hypoth-
esized object positions. Second, the visual grouping procedure is explained, that
provides the system with a data-driven generalization over category instances
that is obtained in a totally unsupervised manner. This is implemented by an
agglomerative clustering on the extracted scale-invariant object representations.
Third, the model for performing categorization is described that is based on the
same scale-invariant representation and can handle information obtained in a
supervised, semi-supervised and unsupervised fashion.

2.1 Low-Level Vision and Object Representation

Feature extraction. When a new image is grabbed from the camera, SIFT
descriptors [14] are extracted at hessian-laplace interest points [16]. While there
exists a wide range of interest point and descriptor combinations, we decided
for this particular combination based on evaluations on different categorization
tasks [15]. Following a common philosophy in the field to visual categorization
[4,13,18,12,1,7], we first generate a visual codebook based on clustering of
detected features. In this paper we use a codebook with 1000 entries obtained
by k-means clustering. The matching procedure is accelerated by re-normalizing
the codebook entries to a fixed length, which transforms the Lo-norm to a scalar
product with an additive constant: ||z, y||? = (z — y)? = 2* + y*> —2xy. The
———
const
matching of all image features to all codebook entries can now be computed
by a simple matrix multiplication which lends itself to further speed-ups. The
introduced errors are found to be negligible.

Object representation. One of the important ingredients of our system is that
we use a unified and scale-invariant object representation. This representation is
the basis not only for discovering objects in the scene, but also for visual grouping
and object categorization. More specifically we adapt the representation of scale-
invariant patterns from [7]. This representation can be seen as a extension to
the bag-of-words representation [4] by adding two spatial dimensions to each
bin [12]. In order to obtain a localized, scale-invariant representation, features
are collected within a fixed aperture (see also [1]) and the feature positions
(poss, posy) are normalized with respect to the center of the pattern (cs,cy):
(poss, posy) = ((posy — ¢z)/0), (posy — ¢y)/o) where o is the detected scale of
the feature. For efficiency, we store these patterns as sparse vectors ¥.

Object Discovery. We discover objects in the scene as reoccurring patterns as
described in [7]. The method can be seen as an adaptive approach for acquiring
a feature statistics of objects in recently observed scenes. This statistic is used
to hypothesize object centers given the observed patterns by finding maxima of
the computed likelihood function. Instead of taking only the global maxima of
this likelihood function, we hypothesize all local maxima as object centers. As



Ci
A R R Y
B

Visual Grouping by
Unsupervised Clustering

Fig. 2. Visual grouping of objects by clustering.

a result, an observed scene is represented by a set of localized, scale-invariant
patterns ¥ at the locations indicated by this discovery procedure.

By keeping a fixed number of patterns (the most recent ones) in memory,
this online method for object discovery meets our real-time requirements and
also consumes a constant amount of memory. Even though the original method
can handle significant background clutter we cannot benefit from that large
statistics, as the number of interactions with the system is limited. In a sense we
decided to trade generality for real-time capability of the system. As it has been
shown that arbitrary backgrounds can be handled when sufficient statistics are
available, we will extend our system in this direction.

2.2 Unsupervised Visual Grouping

Similarily to [8], we use an agglomerative clustering scheme (average linkage) to
group object instances in an unsupervised manner. The objects are represented
as scale-invariant patterns ¥ (Sec. 2.1), which are normalized to unit length
and we use the scalar-product to measure similarity between the objects. The
threshold required for the clustering scheme was set empirically to a constant
value for all our experiments. Figure 2 visualizes the clusters Cy to C obtained
by our system given the observed objects displayed on the left. Although there
are some confusions, we observe a good generalization across category instances.
In order to obtain representatives W ¢, for each cluster Cj, we compute a weighted
sum of the observed patterns ¥y:

Wo, = Y p(Ci) P, (1)
k

In our implementation, we have chosen to use hard assignment of the patterns
to the clusters which renders the probability p(C;|¥%) of assigning pattern ¥ to
cluster Cj binary.

2.3 A Joint Model for Visual Categorization from Supervised,
Semi-Supervised and Unsupervised Input

In this section, we present a model for visual category recognition that com-
bines different levels of supervision to a joint model. The key ingredient is the
scale-invariant pattern representation from Secion 2.1, which we use throughout.
The last section (2.2) formulated an unsupervised grouping process using this
common representation.
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Supervised Categorization. To provide basic functionality for our system,
we describe how supervised categorization can be implemented. Similar to clus-
tering in Section 2.2, we model each category A; by a single representative lI/f‘i
(superscript S denotes the supervised model). This is done by summing over all
training patterns available for that category

!Ili = Z !pjv (2)

jeSAi

where S4¢ denotes the indices of the patterns that are labeled with category A;
in a supervised manner (e.g. ”This is a bottle”).

Incorporating Semi-Supervision and Unsupervised Information. We
formulate the fusion of information obtained from supervised to unsupervised
sources as an extension of the supervised case by assuming uncertainty about
the correct labeling of the clusters C; and their representatives ¢, from the
unsupervised visual grouping step (Sec. 2.2):

unsupervised
=~
Uy = U5 +ZP(A1'|C£) Y, (3)
~~ 1

supervised

semi-supervised

p(A;|C;) encodes the belief that cluster C; contains instances of category A;. How
this probability is computed from a few interactions and updated by associating
spatial expression with visual observations is described in Section 4.

To perform classification in the supervised and semi-supervised case, we eval-
uate the proposed model ¥ 4, as well as lI/ii for an observed pattern ¥ by using
histogram intersection. Intuitively, the intersection measures to which percent-
age the model explains the observation, which we interpret as probability of
belonging to the same class. In order to make models and observations compa-
rable we normalize both to one. Bayes’ rule is applied afterwards to obtain the
model posterior:

p(“ﬂwz‘h) = Z Inin(!l:/, WAl) (4)
_ p(gp|?Al)p(WAl) (5)
ZA p(gp|WAw)p(!pA¢)

p(W 4,) is the category prior, which we assume to be uniform. We decide for the
category label with the highest posterior:

p(WAi !l:/)

A, = argmax p(¥ 4, [¥) (6)
A.

7

3 Language Sub-System

In human-assisted visual learning, a human tutor provides the system with de-
scriptions of the current visual scene. To relate these descriptions to the visual



input, the system constructs a representation of the meaning of an utterance. For
this analysis we use a Combinatory Categorial Grammar(3] parser!. The parser
uses a CCG grammar to relate the syntactic structure of an utterance to the
propositional meaning it expresses. Meaning is represented as an ontologically
richly sorted, relational structure similar to a description logic formula [2], which
makes it possible to use ontologies to mediate between linguistically expressed
meaning, and the categories formed in the visual system. Using the hierarchi-
cal structure of ontologies, and the possibility to perform ontological inference
over instances on these ontologies, provides a more general and better scalable
approach to ”visual grounding” of language than provided by the string-based
approach proposed in e.g. [17], or previous ontology-based approaches such as
[10,11].

In our scenario, utterances are typically predicative copulative sentences in
indicative mood (i.e. ?X is Y”), which assert that a given predication (”Y”) holds
for the subject of the sentence (?X”). In our examples, the predication consists
of a phrase that encodes a spatial relation (e.g. ”left of the bottle” or ”below
the apple”). In the logical form, the subject is represented as the <Restr> of
the state description that is denoted by the utterance, whereas the predication
is represented as <Scope>.

We can thus easily derive the spatial configuration asserted in an utterance
from its logical form representation. The following example shows such a logical
form that is the result of the parsing process of the utterance ”the mobile is left
of the bottle”:

Obl:state(be ~
<Mood>ind ~
<Restr>(ml:thing ~ mobile ~
<Delimitation>unique ~
<Number>sg ~
<Quantification>specific_singular) ~
<Scope>(ll:region "~ left ~
<Plane>horizontal ~
<Positioning>static ~
<Dir:Anchor>(b2:thing " bottle ~
<Delimitation>unique ~
<Number>sg ~
<Owner-of>+
<Quantification>specific_singular)))

For entering utterances into the system, we connect the parser with a speech
recognizer as well as a keyboard interface. In the experiments, we mostly use the
keyboard interface as well as scripted input for larger evaluations.

4 Spatial Reasoning and Cross-Modal Association

Modeling spatial relations as perceived by the human is a challenge in itself,
as issues like reference frame and context have to be handled appropriately
in situated dialogue systems [9]. Considering the scenarios and main focus of
this paper, we restricted ourselves to modeling four basic spatial relations R €

! http://openccg.sourceforge.net



{"leftof”, "rightof”, ”above”,”below” }. We employ triangular shaped distribu-
tions p(pos(¥;), pos(¥;)|R) defined in 2d image coordinates, where objects are
referenced by their patterns ¥; and pos(¥;) denotes their position in image coor-
dinates. Although these distributions are represented as non-parametric kernel
densities which lend themselves to online updating, we don’t explore this option
in this paper and keep them fixed in the experiments.

Spatial Reasoning. We formulate the association of a spatial expression F
extracted from an utterance (see Sec. 3) with two patterns ¥; and ¥, with
positions pos(¥;) and pos(¥;) observed in scene Sy, as finding the most likely

pair P; ; of patterns: PZ(I;) = argmaxp,  p(P;;|E, Sk),where
P(Pij|E, Sk) = p(Wi, ¥j, pos(¥i), pos(¥;)| E, Si)
= p(Wl E, Si) p(¥5|E, Sk) p(pos(¥;), pos(¥))|E, Sk), (7)
with
p(Y|E, Sk) = ZP(MAh)p(AME, Sk). (8)
h

As we don’t model a complete category system yet, leave out contextual effects
and assume certainty about the expression E referring to the categories A, and
A., and the relation R, the equation simplifies to

P(Pij|E, Sk) = p(Wil Ae, )p(¥)| Ae, )p(pos(¥:), pos(¥;) | ) (9)
Finally, we insert the visual model from Eq. 3 to obtain a computational model:
P(Pij| B, Sk) = p(il@e, )p(¥; [P, )p(pos(¥:), pos(¥;) | R) (10)

This formulation facilitates incorporating information and belief from previous
interactions as well as learning from scratch. If no information about the visual
categories is available p(¥;|®.,) and p(¥;|¥.,) become uninformative and the
system relies only on its notion of spatial relations p(pos(¥;), pos(¥;)|R). This
can lead to wrong associations. In Section 5 we present an example and show
that the system can successfully deal with this issue.

Cluster Labeling. We want to make use of the belief about associations be-
tween spatial expressions (Eq. 7) and objects in the scene to improve the label
assignment p(A4;|C;) of the object clusters in Eq. 3. Therefore we accumulate the
evidence for cluster C; being labeled as containing instances of category A; by
a simple count statistic p(Cj|A;) based on the maximum likelihood estimates of
Equation 7. The probability for assigning label A; to cluster C is obtained by
applying Bayes’ rule

p(CilAi)p(A;i
> p(CilAy)p(Ai)’

where we assume a uniform category prior p(A;). This closes the loop in our
system as outlined in Fig. 1.

P(AilCr) =

(11)



5 Experiments

In the first part of our experiments, we describe two scenarios, that show the
capabilities of our system to propagate information, resolve ambiguities and re-
cover from errors. In the second part we perform a quantitative analysis to show
that the unsupervised visual grouping step improves learning speed and accu-
racy with respect to the amount of provided supervision. Finally, we’ll provide
computation times for the individual modules to judge about the real-time ca-
pabilities of the system.

5.1 Label Propagation and Conflict Resolution

Scenario 1 - Label forward propagation. In the first scenario, one annotated
example each for banana and mobile is presented to the system. Then the system
observes the scene as shown in the screenshot in Figure 3(a) and the utterance
”the can is above the mobile” is parsed. The red lines visualize the observed
relations between objects in the scene. Very unlikely ones have already been
pruned away by the system. By generalizing across category instances, system
identifies ”mobile” and ”banana” correctly (with probabilities 0.69 and 0.66
respectively) while evaluating ”mobile” model for the banana results in a low
probability of 0.15. Consequently the most likely relation is inferred correctly
and displayed in light green. A model for the category ”can” is created and the
observed mobile is added to the existing model for "mobile”. In fact, the figure
shows the state in which the acquired ”can” model is already used for detection.
The can is detected correctly, but also the bottle gets a high score for the ”can”
model, as it’s the best explanation given the learned categories (banana, mobile,
can).
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Fig. 3. (a) shows an example scenario for propagation of labels from
known categories to unknown ones. (b) shows the improvement of
the semi-supervised approach over the purely supervised approach by
exploiting information from unlabeled data.
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Scenario 2 - Label backward propagation. In the second scenario, we
show how the system can recover from erroneous beliefs and update its models
accordingly. The system starts without any knowledge about visual categories.
Figure 4 shows a screenshot displaying the scene as observed by the system,
which is accompanied by the utterance ”the can is above the mobile”. Using the
same visualization as in the previous scenario, it can be seen in the left image
that the most likely relation inferred by the system is wrong. Now we provide
the system with supervised knowledge of the visual categories bottle and pen.
Revisiting the scene in memory, the object probabilities get updated and the
belief about the associated relation gets changed to the correct one as shown in
the right image.

6 06 Scene0002

Fig.4. Scenario which shows how the system updates associations
(light green) to recover form an incorrect belief.

5.2 Quantitative Evaluation
Semi-Supervised Learning. Finally, we performed a quantitative analysis by

taking 2 images of 5 instances for each of the categories: mobile phone, pen,
bottle, can and apple. We gradually increase the training set from one instance
for each category to four instances. Figure 3(b) shows that the semi-supervised
learning (Sec. 2.3) outperforms the purely supervised learning, as the few avail-
able labels get propagated to the unlabeled data (Eq. 11) which was clustered
by the visual grouping step (Sec. 2.2). The experiments were performed using 5
fold cross-validation.

Speed. The system as described in this paper runs at about 1Hz on a CoreDuo
2GHz laptop when detection and categorization are performed. An update of
the clustering and spatial reasoning takes about 2 seconds total. Therefore the
system is fast enough to operate interactively with a human tutor.

6 Conclusions

We present a system for cross-modal learning that combines unsupervised and
supervised information in a unified framework. The mechanism that associates
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expressions from language with the visual input can resolve ambiguous input and
recover from erroneous beliefs. The experimental section provides qualitative as
well as quantitative results that show these capabilities of the system. Finally,
we were able to cut down the computing time to a level at which a human can
interact with the system as a tutor.
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