
Autonomic Computer Vision Systems 

James L. Crowley1, Daniela Hall2, Remi Emonet1  
 

1 INP Grenoble, Project-Group PRIMA, INRIA Rhône-Alpes, France 
2Société ActiCM, Moirans, France 

{James L. Crowley, Remi Emonet}@inrialpes.fr, Daniela.Hall@free.fr 

Abstract. For most real applications of computer vision, variations in operating 
conditions result in poor reliability. As a result, real world applications tend to 
require lengthy set-up and frequent intervention by qualified specialists. In this 
paper we describe how autonomic computing can be used to reduce the cost of 
installation and enhance reliability for practical computer vision systems. We 
begin by reviewing the origins of autonomic computing. We then describe the 
design of a tracking-based software component for computer vision. We use a 
software component model to describe techniques for regulation of internal 
parameters, error detection and recovery, self-configuration and self-repair for 
vision systems.    
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1   Towards Robust Computer Vision 

Machine perception is notoriously unreliable.  Even in controlled laboratory 
conditions, programs for computer vision generally require supervision by the 
programmer or another highly trained engineer. To meet constraints on reliability, 
vision system developers commonly design systems with parameters that can be 
adapted manually. In the best case, such parameters are controllable from an on-line 
interactive interface. All too often such parameters are simply embedded within the 
source code as magic numbers. Such systems perform well in controlled or static 
environments, but can require careful set up and "tuning" by experts when installed in 
new operating conditions.  The need for installation and frequent maintenance by 
highly trained experts can severely limit the market size for such systems. Robust 
operation in changing, real world environments requires fundamental progress in the 
way computer vision systems are designed and deployed.  

We believe that autonomic computing offers a theoretical foundation for practical 
computer vision systems. Furthermore, it appears that machine perception is an ideal 
domain for the study of autonomic computing techniques, because of requirements for 
robust real time response under different operating conditions, and the availability of 
feedback on quality of processing. In this paper, we describe how autonomic 
computing can be used to build computer vision systems. 
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1.1   Autonomic Computing 

Autonomic computing has emerged as an effort that takes inspiration from 
biological systems to render computing systems robust [1]. According to Klephard 
and Chess, [2] the term "Autonomic Computing" has been introduced by IBM vice 
president Paul Horn, in a keynote address to the National Academy of Engineers at 
Harvard University in March 2001. Horn presented autonomic computing systems as 
systems that can manage themselves given high-level objectives from administrators. 
The term autonomic computing was adapted as a metaphor inspired by natural self-
governing systems, and in particular, from the autonomic nervous system found in 
mammals.  

The autonomic nervous system (ANS) is a part of the nervous system that is not 
consciously controlled and serves to regulate the homeostasis of organs and 
physiological functions. The ANS is commonly divided into three subsystems: the 
sympathetic nervous systems (SNS), parasympathetic nervous system (PNS) and 
enteric nervous systems (ENS). The sympathetic nervous system acts primarily on the 
cardiovascular system and activates the sympatho-adrenal response of the body, also 
known as the fight or flight response.  The parasympathetic system (PNS), also 
known as the "rest and digest" system, complements the sympathetic system by 
slowing the heart, and returning blood circulation in the lungs, muscles and gastro-
intestinal system to normal conditions after reactions by the sympathetic nervous 
system.  The enteric nervous system (ENS) autonomously regulates digestion, and is 
increasingly referred to as a "second brain".   

Inspiration from biological models has lead to efforts to design computing systems 
with a number of autonomic properties. These include: 
• Self-monitoring:  The ability of a component or system to observe its internal state, 

including such quality-of-service metrics as reliability, precision, rapidity, or 
throughput. 

• Self-regulation:  The ability of a component or system to regulate its internal 
parameters so as to assure a quality-of-service metric such as reliability, precision, 
rapidity, or throughput.  

• Self-repair: The ability of a component or system to reconfigure itself so as to 
respond to changes in the operating environment or external requirements [3]. 

• Self-description:  The ability of a component or system to provide a description of 
its internal state.  

Designing systems that have these properties can result in additional computing 
overhead, but can also return benefits in system reliability and usability.  

In order to fully exploit an autonomic approach, computer vision systems must be 
embedded as part of a larger system for user services designed according to 
autonomic principles. Most important is the ability to automatically launch, configure 
and reconfigure components and adjust parameters for component systems.  Modern 
tools for software ontologies can be used to provide a component registry to record 
available sensors and components according to their capabilities, and to provide 
diagnostic and configuration methods to the larger system. An ontology server can 
provide a registry for the data types and events consumed and produced by 
components, thus making it possible for a system to detect and repair errors, either by 
modifying data or by reconfiguring the interconnection of modules or components. 
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With such an approach, systems can respond to failure or degradation by shutting 
down the failed component and launching an alternate.   

A number of authors have experimented with such techniques for constructing 
robust computer vision systems. Murino [4] addresses the problem of automatic 
parameter regulation for vision systems within a multi-layered component 
architecture. Each layer has its own set of parameters that are tuned such that the 
evidence (coming from the lower level) and the expectation (coming from the higher 
level) are consistent. Scotti [5] proposes an approach based on self-organizing maps 
(SOM). A SOM is learned by registering good parameter settings. During runtime, the 
automatic parameter selection chooses the closest setting in SOM space that 
performed best during training.  

In [6], Min proposes an approach for comparing the performance of different 
segmentation algorithms by searching the optimal parameters for each algorithm. He 
proposes an interesting multi-loci hill-climbing scheme on a coarsely sampled 
parameter space. The segmentation system performance is evaluated with respect to a 
given ground truth. This approach is designed for the comparison of algorithms and 
requires testing a large number of different parameter settings. For this reason, the 
utility of this approach for on-line parameter regulation is less appropriate.  

Robertson and Brady [7] propose an architecture for self-adaptive systems. They 
consider an image analysis system as a closed-loop control system that integrates 
knowledge in order to be self-evaluating. Measuring and comparing the system output 
to the desired output and applying a corrective force to the system leads to increased 
performance. The difficult point is to generate a model of the desired output. They 
demonstrate their approach on the segmentation of aerial images using a bank of 
different filter operators. The system selects automatically the best filter for the 
current image conditions.  

The system and approach described below have been worked out in a series of 
European projects over the last 6 years. Experimental validation for techniques for 
parameter initialization can be found in Hall et a. [8]. Techniques and validation for 
parameter regulation are reported in [9].  In this paper we build on and extend this 
earlier work.  

1.2   Some Terminology 

Unfortunately, the vocabulary for component-oriented software engineering and 
autonomic systems are still emerging, and the literature is replete with inconsistent 
uses. Thus it is important for us to clarify some of the terms used in this paper.  

Auto vs. Self: In the software engineering literature, one can often find an almost 
interchangeable use of the terms "auto" and "self". The situation is simpler in French, 
where only the term "auto" exists, and the scientific culture seems to shy from 
anthropomorphic notions. In this paper, we have adopted the following usage:  "Self" 
is used to refer to autonomic abilities that are provided using an explicit (declarative 
or symbolic) description of a system.  Thus a component can be said to be "self-
descriptive" when it contains a declarative description of its function and principles of 
operation, or of its internal components and their interconnections.  The term "Auto" 
will be used for techniques that do not employ an explicit declarative description, but 
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simply on a measured property. Thus an auto-regulatory system may be implemented 
as a hardwired feedback process that regulates parameters without explicit description 
of their meaning or use while a self-repairing system will use a declarative model to 
reconfigure its internal function.  

Homeostasis and Autonomic Control: Homeostasis or "autonomic regulation of 
internal state" is a fundamental property for robust operation in an uncontrolled 
environment. A component is auto-regulated when processing is monitored and 
controlled so as to maintain a certain quality of service. For example, processing time 
and precision are two important state variables for a tracking process. These two may 
be traded off against each other. The process supervisor maintains homeostasis by 
adapting module parameters using the auto-critical reports.  

Modules, Components and Services: Process architectures have been explored 
for computer vision systems since the 1990's [10]. Such architectures are a form of 
data flow models for software architectures [11].  We apply a component model [12] 
to the definition of software at three distinct layers, as shown in figure 1. These three 
layers are the service layer, the component layer and module layer. Programming 
style tends to vary for these three layers. A software agent architecture, using tools 
such as the JAVA JADE environment is often appropriate for the service layer. The 
software components are generally programmed as autonomous computer programs 
under the control of a component supervisor. Modules can be programmed as a class 
with methods using an object-oriented style or as a procedure or subroutine in a more 
classical procedural language. Each layer provides an appropriate set of 
communication protocols and configuration primitives, as well as interface protocols 
between layers.  

 
Fig. 1. Three Layers in a component-based software architecture 

 
Modules: Modules may be formally defined as synchronous transformations 

applied to a certain class of data or events, as illustrated in Figure 2.  Modules 
generally have no state. They are executed by a call to a method (or a function or a 
subroutine depending on the programming language) accompanied by a vector of 
parameters. The parameters specify the data to be processed, and describes how the 
transform is to be applied.  The output from a module is generally output to a serial 
stream or posted as an events to an event dispatcher.  

A module may be considered as auto-descriptive when it returns a report that 
describes the results of processing.  Examples of information contained in such a 
report may include elapsed execution time, confidence in the result, or any exceptions 
that were encountered.   
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Fig. 2. Modules apply a transformation to data and return a report 

An example of such an auto-descriptive module is a module that transforms RGB 
color pixels within a region of interest of an image into a scalar values that represents 
the probability that the pixel belongs to a target.  Such a transformation can defined as 
a lookup table representing a ratio of color histograms [13]. The command to run the 
module is accompanied by a parameter vector that includes a pointer to the input 
image buffer, a pointer for an output image buffer, a pointer to a ROI (Region of 
interest) data structure, a pointer to the lookup table, and a step size at which the 
transform is to be applied within the ROI.  Computing time for this process may be 
reduced by restricting processing to one pixel out of S (S represents a “step size”) 
[14]. Most computer vision algorithms can be implemented as an assembly of such 
modules.  

Perceptual Components: Modules may be assembled into software components. 
A component is an autonomous assembly of modules executed in a cyclic manner 
controlled by a supervisor as shown in figure 3.  The component supervisor interprets 
commands and parameters, supervises the execution of the components, and responds 
to queries from the components with a description of the current state and capabilities 
of the component. The auto-critical report from modules allows the supervisor to 
adapt the execution schedule for the next cycle so as to maintain a target for quality of 
service, such as execution time or number of targets tracked.  In our group, we embed 
C++ modules in a modified "scheme" environment [15] to implement supervised 
perceptual components.  

 
Fig. 3. A perceptual component composed of a set of modules under the cyclic 

control of a component supervisor. 

User services can be designed as software agents that observe human activity and 
respond to events. An example of such a service would be an activity logging service 
in an office environment, that maintains a journal of classes of activities such as 
talking on the phone, typing at a computer or meeting with visitors. In the CHIL 
project [16] we have implemented a number of such services based on dynamic 
assembly of perceptual components. Such services can be driven by a situation model 
[17] that integrates information from different perceptual components.  In this paper 
we will concentrate on the software component design model for computer vision to 
provide such services.  
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2. Autonomic Perceptual Components 

As described above, perceptual components are software components that observe 
a scene or a recorded data stream in order to measure properties, to detect and 
recognize entities or activities, or to detect events. Perceptual components based on 
tracking constitute an important class of components with many applications. Such 
components integrate information over time, typically through calculations based on 
statistical estimation. Tracking components may be designed for nearly any detection 
or recognition method, and provide important benefits in terms of robustness of 
detection and focus of processing resources.  In this section, we propose a general 
software model for tracking-based perceptual components.  

2. 1. Tracking-Based Perceptuel Components 

Tracking systems constitute an important class of perceptual components. The 
architecture for a typical tracking-based perceptual component is shown in figure 4.  
Tracking is a cyclic process of recursive estimation, classically defined as a Bayesian 
estimation process composed of three phases:  Predict, Detect, and Update. A well-
known framework for such estimation is the Kalman filter [18].  The prediction phase 
uses the previously estimated attributes for observed targets (or entities) to predict 
current values in order to control observation. The detection phase applies the 
prediction to the current data to locate and observe the current values for properties, 
as well as to detect new targets.  The update phase tests the results of detection to 
eliminate erroneous or irrelevant detections (distracters), recalculate the latest 
estimates for parameters for targets, and amend the list of observed targets to account 
for new and lost targets.  

 
Process Supervisor

Detection Modules

Detection Modules

Detection Modules

Detection Modules

Detection Modules

Video

Demon

Target PredictionTarget Detection

Update Targets Recognition EntitiesImage

Detection

Regions

Recognition
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Fig. 4. A tracking-based perceptual component. 

We add a recognition phase, an auto-regulation phase, and a communication phase 
to the classical tracking phases in our tracking-based perceptual component. In the 
recognition phase, recognition algorithms are applied to the current list of targets to 
verify or determine labels for targets, and to recognize events or activities. The auto-
regulation phase determines the quality of a service metric, such as total cycle time or 
confidence and adapts the list of targets as well as the target parameters to maintain a 
desired quality. During the communication phase, the supervisor responds to requests 
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from other components. These requests may ask for descriptions of the component 
state or capabilities, or may provide specification of new recognition methods.    

2.2 Component Supervisor 

The component supervisor acts as a scheduler, invoking execution of modules in a 
synchronous manner. The execution report returned by each module allows the 
supervisor to monitor performance and to adjust module parameters for the next 
cycle.   The results of processing are fed to a statistical classifier to detect incorrect 
operation. When such errors are detected a second classifier can be used to select a 
procedure to correct the error, as described below. The supervisor is able to respond 
to external queries with a description of the current state and capabilities.  We 
formalize these abilities as the autonomic properties of self-monitoring, auto-
regulation, self-repair, and self-description.  

A self-monitoring process maintains a model of its own behavior in order to 
estimate the confidence for its outputs. Self-monitoring allows a process to detect and 
adapt to changing observational circumstances by reconfiguring its component 
modules and operating parameters.  Techniques for acquiring an operating model, for 
monitoring operating conditions, and for repairing operational problems are described 
in section 3. 

A process is auto-regulated when processing is monitored and controlled so as to 
maintain a certain quality of service. For example, processing time and precision are 
two important state variables for a tracking process. These two parameters may be 
traded off against each other.  The process controllers may be instructed to give 
priority to either the processing rate or precision. The choice of priority is determined 
by the federation tool or by the federation supervisor. Techniques for monitoring 
output quality and for regulating internal parameters are also described in section 3. 

Each target and each detection region contains a specification for the module to be 
applied, the region over which to apply the module, and the step size to apply 
processing. Recognition methods are loaded as snippets of code that can generate 
events or write data to streams. These methods may be downloaded to a component as 
part of the configuration process to give a tracking process a specific functionality.  

Quality of service metrics such as cycle time and number of targets can be 
maintained by dropping targets based on a priority assignment or by reducing 
resolution for processing of some targets (for example based on size).   

A self-descriptive controller can provide a symbolic description of its parameters, 
data structures, functions and current internal state.  Such descriptions are useful for 
both manual and automatic composition of federations of components. During 
initialization, components may publish a description of their basic functionality and 
data types in an ontology server. During execution, components can respond to 
requests for information about current state, with information such as number and 
confidence of currently observed targets, current response time, or other quality of 
service information.   
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2.3 Assembling Components to Provide Services  

A user service is created by assembling a collection of software components. 
Available components may be discovered by interrogating the ontology server. An 
open research challenge is to provide an ontological system for indexing components 
based on function in a manner that is sufficiently general to capture future 
functionalities as they emerge. In addition the ontology server is used to establish 
compatible communications of data. The problem of aligning ontologies of data 
structures is manageable when components are co-designed by a single group. The 
problem becomes very difficult when components are developed independently with 
no prior effort to agree on specifications. This problem resembles to web-ontology 
alignment problem that currently receives attention in software engineering.  

We have constructed a middle-ware environment [19] that allows us to 
dynamically launch and connect components on different machines. This 
environment, called O3MiSCID, provides an XML based interface that allows 
components to declare input command messages, output data structures, as well as 
current operational state.    

 

 
Fig. 5. An example of a system for tracking of blobs in 3D. The 3D Bayesian blob 
tracker provides a ROI and detection method for a number of 2D entity detection 

components. The result is used to update a list of 3D blobs.   
 
As a simple example of a service provided by an assembly of perceptual 

components, consider a system that integrates targets from multiple cameras to 
provide 3-D target tracking, as shown in figure 4.  A set of tracked entities is provided 
by a Bayesian 3D tracking process that tracks targets in 3D scene coordinates [20]. 
This process specifies the predicted 2-D Region of Interest (ROI) and detection 
method for a set of pixel-level detection components. These components use color, 
motion or background difference subtraction to detect and track blobs in an image 
stream from a camera.  The O3MICID middle ware makes it possible to dynamically 
add or drop cameras to the process during tracking.  
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3. Methods for autonomic perceptual components 

 In this section we briefly describe methods for self-monitoring, auto-regulation, 
and self repair of perceptual components.  

3.1 Self-monitoring and Auto-regulation 

As described above, a supervisor can sum the execution times from the auto-report 
from modules to determine the most recent cycle time.  Excessive execution time can 
be reduced by such methods as removing targets from the tracked target list, reducing 
the frequency of calls to the detection regions used to detect new targets, or directing 
some detection modules to reduce resolution by processing 1 out of S pixels.   

In addition, a component supervisor can be made to detect errors in the current 
targets using statistical pattern recognition.  Our approach is to use a binary classifier 
whose parameters have been trained from data that is known to be valid. When the 
parameters of tracked entities are classified as erroneous, a second, multi-class 
classifier can be applied to select a repair procedure.  

The goal of the auto-critical evaluation is to monitor the performance of the system 
in order to detect degradation in performance. This requires the definition of a 
measure that estimates the goodness of component output with respect to a reference 
model that is constructed in a learning phase. Such a reference model captures normal 
component output, and provides a likelihood that the current outputs are normal.   

There are a variety of representation forms that could provide a reference models. 
These include histograms, graphs and Gaussian Mixture Models (GMMs).   
Histograms can often provide a good solution to concrete problems despite their 
simplicity. Probability density approximations such as histograms or GMMs have the 
advantage that a goodness score can be defined easily based on statistical estimation. 
All probabilistic reference models have in common that they estimate the true 
probability density function (pdf) of measurements. For example a pdf represented by 
a GMM can be obtained by applying a standard learning approach such as clustering 
to the training data and representing each cluster by a Gaussian.  An alternative 
approach, proposed by Makris and Ellis, [21] is to learn entry and exit points from 
examples and represent them as a Gaussian mixture. Trajectories are represented by a 
topological graph.  

The scene reference model together with a quality metric forms the knowledge 
base of the self-adaptive system. It allows the system to judge the quality of the 
system output and to select parameters that are optimal with respect to a quality 
metric. The success of the self-adaptive technique depends on the representativeness 
of this scene reference model and its metric. As a consequence, model generation is 
an important step within this approach.  

For commercial applications, incremental techniques for learning the scene 
reference model are especially desirable, because only a limited number of ground 
truth data may be available for initialization for each environment.  Such techniques 
have the great advantage, that they can be refined as more data becomes available.   
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3.2 Error Recovery 

According to Kephart and Chess [2], error recovery (or self-healing in their 
terminology) is composed of three phases: error detection, error diagnosis, and error 
repair. We have explored techniques for self-healing perceptual components based on 
the addition of modules for "Error Detection", "Error Classification" and "Error 
Repair" for our tracking-based perceptual component.   

The "Error Detection" module monitors the output of a perceptual component 
maintaining a target history and a binary classifier. A variety of different binary 
classification methods may be used for error detection. In our experiments, we have 
used a support vector machine, followed by a running average of the distance from 
the decision boundary for the last N cycles. As long as the running average remains 
within the normal range, targets parameters are simply added to the target history.  
When a target is classified as abnormal recent sequence is extracted from the target 
history for further processing.  

The recent target history for an abnormal target is passed to the error classification 
component for diagnosis. Error classification is a two-stage multi-class recognition 
process that assigns the target history to one of a known set of error classes, or a 
special "unkown" class.  The first stage classifier discriminates known from unknown 
error classes. The second stage assigns the target history to one of the known error 
classes. Both stages are implemented as support vector machines.  

Error classification is based on a set of features extracted from the recent target 
history. Features that we have used include  
• the mean target area 
• the mean target elongation 
• the mean target motion energy 
• the mean target area variation energy:  
Both error classifiers are implemented as support vector machines (SVM) classifiers 
using the Radial Basis Function (RBF) kernel.  

The first SVM classifier is trained by considering all training data from all known 
error classes as a single class.  The implementation uses LIBSVM [22]  to learn this 
one-class SVM. The second classifier is a multi-class SVM learnt using the samples 
of the known error classes. A RBF kernel is also used for this classifier. 

A database of repair strategies associates each error class with a particular strategy. 
In a fully automatic system, the strategies would be discovered automatically from a 
large set of examples and a large set of possible commands for error repair. An 
appropriate method would be the acquisition of successful error repair procedures by 
trial and error. Unfortunately, such a fully automatic system would require a very long 
time to generate a successful set of repair procedures. 

As with other systems that use expert knowledge to control a vision system [23], 
[24] use hand coded repair procedures. Such repair procedures capture the expert 
knowledge of the designer. We have used this approach to design simple but efficient 
repair strategies for perceptual components.   

New repair strategies can be added during the system lifetime as new classes of 
errors are detected. Periodically, the "unkown" classes are reviewed by a human who 
may assign the history to a known error and thus update the error classifier, or assign 
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them to a new error class. When a new error class is detected, the classification 
process is updated, and a repair procedure is selected or encoded by the human. Error 
repair may involve deleting spurious targets, changing target parameters or detection 
module used for that target, change parameters for initial target detection or changing 
the set of modules used by the supervisor during each cycle.   

There is not necessarily a one-to-one relation between error classes and repair 
strategies: a given strategy can be used to repair error from various classes. In the case 
of the tracking system, we use some simple repair procedures such as killing targets 
that are identified as false positives by the classifier, refreshing the background in 
problematic regions or even doing nothing (e.g. in the case of a "not an error" class or 
when the erroneous target has already disappeared).  

4. Conclusions 

Autonomic computing makes possible the design of systems that adapt processing to 
changes in operating conditions. In this paper we have described how autonomic 
methods can be included within a component-oriented design. Software components 
for computer vision can be provided with  automatic parameter initialization and 
regulation, self-monitoring and error detection and repair,  to provide systems in 
services may be assembled dynamically from a collection of independent 
components.  
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