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Abstract. The goal of biomimetic vision is to build artificial vision systems that 
are analogous to the human visual system. This paper presents a software 
architecture for biomimetic vision in which every major component is clearly 
defined in terms of its function and interface, and where every component has a 
analog in the regional functional anatomy of the human brain. We also present 
an end-to-end vision system implemented within this framework that learns to 
recognize objects without human supervision. 
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Introduction 

Biomimetic vision research hypothesizes that in the long run artificial vision 
systems will be more robust, more adaptable and easier to work with if they mimic 
human vision. After all, the design is proven, and it will be easier to interact with 
robots and other artificial agents if they see the world more or less the same way we 
do. Unfortunately, in the short term biomimetic vision can seem unnecessarily 
difficult.  Mimicking human vision is often an indirect route to solving a computer 
vision task. 

This paper presents a software architecture for biomimetic vision.  The goal of the 
architecture is to describe the major components of human vision and the interactions 
among them.  The components are at the level of the regional functional anatomy of 
the human brain, and of complex subsystems in computer vision. The goal to build a 
computer vision system whose major components are functionally analogous to 
anatomical brain centers, so that its macro-level design is similar to human vision.   

The emphasis here is on large-scale components. We are less concerned with how 
the component modules are implemented. After all, computer hardware is very 
different from neural “wetware”, and software components correspond to massive 
networks of heterogeneous neurons. At this level of abstraction, we allow the 
software components to be implemented by standard algorithms, and do not restrict 
ourselves to neural networks. 

The software architecture is described in terms of modules and interfaces. Many 
systems could be implemented within this framework that match the top-level 
architecture of human vision, although some will be better than other in terms of 
performance and/or biological fidelity.  We describe and demonstrate a system 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
           Proceedings of the 5th International Conference on Computer Vision Systems (ICVS 2007) 
          Published in 2007 by Applied Computer Science Group, Bielefeld University, Germany, ISBN 978-3-00-020933-8 
          This document and other contributions archived and available at: http://biecoll.ub.uni-bielefeld.de



developed within the architecture, and discuss alternative implementations for many 
components. We conclude with comments about aspects of human vision that are not 
yet reflected in the architecture, and how the architecture and system will be 
expanded to include them in the future. 

The Regional Functional Anatomy of Human Vision 

The gross regional functional anatomy of the human visual system is well-known. 
The early vision system includes the retina, the dorsal lateral geniculate nucleus of the 
thalamus (LGNd), the superior colliculus of the midbrain, and cortical regions V1 
through V4. Beyond early vision the system splits into the ventral and dorsal streams. 
The ventral stream includes the lateral occipital complex (LOC) and posterior 
inferotemporal cortex (pIT). It processes object properties for tasks such as object 
recognition and landmark-based navigation. The dorsal stream includes region V3a, 
the mediotemporal cortex (MT), and structures in the posterior parietal cortex. It 
processes spatial and movement properties for tasks such as tracking, ego-motion 
estimation, and hand-eye coordination. The two streams converge on associative 
memories in the anterior inferior temporal cortex (aIT), the angular gyrus and area 19.  
The associative memories in turn communicate with the dorsolateral prefrontal cortex, 
which closes the loop by providing feedback to LGNd and superior colliculus through 
pathways that include the frontal eye field.  For accessible overviews of the anatomy 
of human vision, see Milner & Goodale [1], Kosslyn [2] or Palmer [3]. 

Regional functional anatomy does not by itself define an architecture.  
Architectures specify both components and interfaces. This paper defines an 
architecture with interfaces inferred from behavioral studies, lesion studies, brain 
imaging techniques and electro-physical recordings. The architecture is limited to the 
task of object recognition. It does not consider visual tasks such as tracking or ego-
motion estimation that are computed in the dorsal visual stream, allowing us to 
concentrate on the early vision system, the ventral stream and associative memories. 
In the past, we have looked at the even more limited task of recognizing highly 
familiar objects, a.k.a. expert object recognition [4].  This paper extends that work to 
more general cases of object recognition. The result is a new model of the 
inferotemporal cortex and its relation to associative memory, as well as refined 
models of early vision and the lateral occipital complex. 

A Biomimetic Software Architecture 

The biomimetic architecture we propose formalizes the major components of the 
human visual system and adds well-defined interfaces, and is shown in Figure 1. 
Readers may already be familiar with rough functional characterizations of many of 
the modules. In particular, Figure 1 shows four modules outlined in black: the early 
visual system (attention and retinotopic processing), lateral occipital complex (feature 
extraction), posterior inferotemporal cortex (object recognition) and associative 
memories (object identification). As discussed below, the most distinctive part of this 
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architecture lies in the definition of the object recognition module, which models pIT, 
and its interface to the associative memories. Object recognition is defined as an 
unsupervised clustering task, not a supervised (or even unsupervised) labeling 
problem.  Labeling and other forms of cross-modal associations are modeled in the 
associative memories, which operate over clusters, not samples. 

 

 
Fig. 1. The biomimetic architecture. LOC refers to the lateral occipital complex, pIT to the 
posterior inferotemporal cortex, and Assoc Mem to associative memories. Arrows in gray are 
not yet implemented. 

Figure 1 also shows arrows in light gray which are part of top-down rather than 
bottom-up object recognition and which have not yet been added to the model. Some 
of these top-down connections pass through the dorsolateral prefrontal cortex and 
frontal eye field. Without these connections, the architecture models object 
recognition in the absence of context.  In fact, most recognition is highly predictive, 
and we intend to add top-down recognition in the near future. 

Early Vision 

Architectural Description 
The early vision system is modeled as a spatial selective attention function. It 
consumes raw images and top-down predictions, and produces image windows 
defined in terms of image positions and scales. The function should optimize stability 
in the sense that if the same object appears in two images at different positions and 
scales but from the same 3D viewpoint (and under similar illumination), the system 
should center attention windows at the same positions and relative sizes on the object.  

Biological Justification 
The early vision system is perhaps the most thoroughly studied part of human neuro-
anatomy. Decades of study have produced detailed models of ganglion cell responses 
in the retina and the parvocellular, magnocellular and interlaminar layers of LGNd. 
Types of known orientation-selective cells in V1 include simple cells, complex cells, 
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end-stopped cells and grating cells, to name just a few.  Other cells are sensitive to 
colors, disparities or motions.  

For all the discussion of edge sensitivity and feature maps, however, the products 
of early vision are spatial attention windows. The early vision system is retinotopic, 
which is to say that every cell has a fixed receptive field in the retina (although they 
also receive efferent inputs), and neighboring cells generally have neighboring 
receptive fields. Features in the early vision system are therefore kept in a 2D spatial 
format. Feature maps in the early vision system also cover the entire retinal image, 
creating essentially a series of image buffers.  Moreover, the early vision system is 
almost the only part of the brain with this organization. As a result, it is a valuable 
resource: mental imagery recruits image buffers top-down to reconstitute images from 
memory [5], and tactile input triggers V1 when subjects read Braille [6].  

Why would the brain compute any feature across the entire retinal image? It 
requires far fewer neurons to compute features downstream in LOC, where the 
computation is restricted to attention windows. If we assume that vision is efficient, 
the only features computed in the early vision system should be those needed for 
selective attention. This is why we model early vision as a spatial attention engine, 
with one caveat: some dorsal pathway tasks such as ego-motion estimation rely on 
extra-attentional features computed over the full field of view. Motion features are 
also needed for spatial attention, however, so the general rule still holds: only features 
needed for selective attention are computed in early vision. 

We should be careful to distinguish among types of attention, particularly overt 
from covert attention, and spatial attention from feature-based or object-based 
attention. Overt attention refers to movements of the eyes and head to fixate gaze on 
points in 3D space. This paper models covert spatial attention, which is the selection 
of (not necessarily foveal) windows within the retinal image for further processing. 
Covert attention cannot be externally observed, but it can be measured at the neural 
level throughout the early vision system [7]. Unfortunately, because covert attention 
cannot be externally observed, we do not know its average dwell time or whether it is 
sequential or coarsely parallel. As a result, we do not know how many spatial 
attention windows can be selected per second.  Covert spatial attention is also 
different from feature-based or object-based attention, which selects or discards data 
further downstream.  

Direct evidence that spatial attention selects windows in terms of position and scale 
comes from Grill-Specter [8], who used repetition suppression effects in fMRI to 
show that the input to LOC from the early vision system was unchanged when the 
stimulus was translated or scaled within a factor of 2. Oddly, the same study showed 
that human spatial attention does not impart rotational invariance, despite evidence 
from computational systems such as SIFT [9] that attention windows can compensate 
for image rotations as well. 

Implementation of Early Vision 
We implemented early vision as finding local maxima in multi-scale DoG 

responses. This approach was first proposed by Koch and Ullman [10], and has been 
refined over the years to form the basis of both NVS [11] and SIFT [9]. Our 
implementation is based on NVS, but was modified to select scales as well as 
positions and to be less sensitive to image transformations [12]. 
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Whether DoG responses are good biological models of bottom-up spatial attention 
in humans is debatable. Parkhurst et al [13] and Ouerhani et al [14] show better-than-
random correspondence between DoG responses and human eye tracking data. Eye 
tracking, however, measures overt rather than covert attention, and Privetera and 
Stark [15] show that almost any high-frequency feature has a better-than-random 
correspondence to eye tracking data. Kadir and Brady [16] have proposed an 
alternative model of bottom-up salience based on local entropy.  

Feature Extraction in LOC 

Architectural Description 
The lateral occipital complex is modeled as a feature extraction mechanism that 
converts spatial attention windows into feature vectors. The feature vectors are sparse 
and high-dimensional, and should capture the local geometric structure and to a lesser 
extent the color information in attention windows. The goal is to project the contents 
of attention windows into a high-dimensional feature space such that structurally 
similar windows will cluster. 

Biological Justification 
The term lateral occipital complex denotes a large cortical region that spatially 

connects parts of the early vision system to the inferotemporal cortex. Although it has 
been studied for years, its exact boundaries in people and monkeys remain open to 
debate, as does the question of whether it is a single functional unit, two units, or 
possibly more. A general discussion of LOC can be found in Grill-Spector et al [17].   

Although the anatomy of LOC is unclear, its significance is not. A subject with 
bilateral lesions to LOC developed visual form agnosia, a condition which left her 
unable to recognize even the simplest objects and shapes [18]. By measuring 
repetition suppression in fMRI, Kourtzi and Kanwisher showed that parts of LOC 
respond identically to an image of an object or its edge image [19], even if its profile 
is interrupted [20]. Using a similar technique, Lerner et al [21] showed that LOC 
responses are able to “fill in” gaps created by projecting bars over images.  

These studies provide converging evidence for a view of LOC as computing 
structural features of attention windows, even in the face of geometrically structured 
noise. More recently, Kourtzi et al [22] have shown that LOC is involved with 
learning shape descriptions for later use, and that it becomes even more active if the 
shapes being learned are partially disguised by complex backgrounds, possibly 
because it has to work harder. A study by Altmann et al [23] suggests that LOC 
combines edge information with motion and disparity data and/or top-down 
predictions. 

Confusing this picture somewhat is a study that suggests that at least part of LOC 
also responds to colors [24], although this may depend partly on the disputed 
boundaries of LOC.  A  study by Delorme et al [25] suggests that feature vectors may 
include both structural and color information, but that the two are kept separate and 
that some subjects take advantage of color features while others do not. Also, the size 
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of LOC and the fact that it becomes only diffusely active in fMRI studies of object 
recognition suggests that the feature vectors are high-dimensional but sparse. 

Implementation   
We implement LOC as a collection of parametric voting spaces, in the style of a 
Hough transform. The studies above suggest that LOC aggregates structural 
information, and behavioral studies by Biederman [26] suggest that collinearity, co-
termination, symmetry, anti-symmetry and constant curvature are particularly 
important structural features. We therefore created parametric representations of 
collinearity (defined over edges), axes of symmetry and anti-symmetry (defined over 
edge pairs), and of centers of curvature and termination (also defined over edge pairs).  
Edges and edge pairs from attention windows vote in these spaces, and the vote tallies 
form feature vectors. A single color histogram is used as a color feature vector. The 
final feature space representation is the concatenation of its structural and color 
feature vectors. 

Object Recognition in Inferotemporal Cortex 

Architectural Description  
The inferotemporal cortex is modeled as unsupervised clustering. It consumes feature 
vectors and produces view categories, which are groups of feature vectors that are 
similar in structure and color. View categories do not correspond to semantic object 
labels; semantic object classes may be divided across many view categories. Black 
cats, for example, do not look like calico cats, and the front view of a cat doesn’t look 
like its side view. View categories are viewpoint and illumination dependent, and 
semantic object classes may be further divided because of differences among 
instances (e.g. black cats vs. calico). Also, view categories typically correspond to 
parts of objects, since attention windows do not presuppose image segmentation.   

Biological Justification 
The psychological literature makes a distinction between unimodal recognition and 
multi-modal identification. As defined by Kosslyn [2], recognition occurs when input 
matches a perceptual memory, creating a feeling of familiarity. Identification, on the 
other hand, occurs when input accesses representations in multi-modal memory. Thus 
we might visually recognize an object as being familiar before we identify it as a cat, 
at which point we know what it looks like, sounds like, feels like, etc.  

Recognition and identification can become disassociated in patients with brain 
damage. Farah [27] summarizes a collection of patients with associative visual 
agnosia. These patients cannot recognize objects, even though they can accurately 
copy drawings and describe the features of an object, suggesting that the early vision 
system and lateral occipital cortex are intact. These patients also show no deficits in 
identifying objects by other modalities; their ability to identify objects from language, 
sound and touch is unimpaired. They therefore demonstrate behaviors that are 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
           Proceedings of the 5th International Conference on Computer Vision Systems (ICVS 2007) 
          Published in 2007 by Applied Computer Science Group, Bielefeld University, Germany, ISBN 978-3-00-020933-8 
          This document and other contributions archived and available at: http://biecoll.ub.uni-bielefeld.de



consistent with damage to a visual recognition module while the multi-modal 
identification module remains intact. 

The opposite scenario is seen in patients with semantic dementia [27]. These 
patients retain basic recognition abilities in all of their senses, but loose the ability to 
form cross-modal associations, for example to associate visual percepts with auditory 
percepts or abstract concepts. The simultaneous loss of identification abilities across 
senses is consistent with a damaged identification system but intact sensory 
recognition modules.  There are also cases of selective semantic dementia, in which 
patients are unable to identify specific classes of objects, for example living things. 
This is probably the result of damage to part but not all of the identification system, as 
may be suggestive of how the multi-modal identification system is organized. 

Evidence that the inferotemporal cortex learns highly specific view categories 
comes from several sources. An fMRI study by Haxby et al [28] suggests that IT 
responds differently to views of standard and inverted faces, while a study by Troje 
and Kersten goes further [29]: people are expert at recognizing other people’s faces 
head-on or in profile, but are only expert at recognizing themselves head-on, because 
that is how they see themselves in mirrors. Behavioral studies of face recognition 
suggest that we are faster and more accurate at recognizing faces illuminated from 
above than below [30].  Single-cell recordings from the inferotemporal cortices of 
monkeys suggests different responses to images of faces based on expression [31]. 
Perhaps most tellingly, Tsunoda et al [32] combined fMRI and single-cell recordings 
in macaques to probe IT responses to stimulus changes, for example removing part of 
a target or removing its color. Every significant change resulted in different cellular-
level responses in IT. Tanaka et al showed that changes in orientation triggered 
different cells in macaque IT [33]. 

The evidence for highly-specific and appearance-based view categories combined 
with the separation of recognition from identification suggests that IT should be 
modeled as unsupervised clustering, while associative memories combine collections 
of category views with training signals to create cross-model object categories. This 
contradicts some other recent biologically-inspired models (e.g. [34]), which learn to 
map from stimuli to labels at the level of the lateral occipital complex. 

Implementation 
We implement IT as a single layer of neurons trained by repetition suppression. Every 
neuron individually learns to divide feature space in two without dividing any densely 
populated portions of feature space (i.e. clusters). As a group, neurons produce binary 
codes that identify view categories. An alternative biologically-inspired unsupervised 
clustering model of IT has been proposed by Granger et al [35].  We are currently 
implementing Granger’s algorithm in order to compare the two approaches. 

Qualitative System Performance 

The purpose of this paper is to describe a biomimetic architecture, not to promote a 
specific system. Nonetheless, a minimal requirement for an architecture is that 
working systems can be built in it.  In the sections above, we described an 
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implementation for every component. Here we describe how the resulting system 
performs.  

We applied the system to a sequence of 591 images of a toy artillery piece on a 
turntable; one of the images is shown in Figure 2. The system selected approximately 
10 attention windows per image, converted the attention windows to parametric 
feature vectors and then clustered the resulting feature vectors into view categories. 
The average image windows for the eight most commonly occurring view categories 
are shown in Figure 3. 

 

Fig. 2. One of 591 images of a toy artillery piece on a 
turntable. The average rotation between images is a little 
less than 1.5°. 

In all eight cases, we can easily identify what part of 
the target or background the view category 
represents, and in all cases the categories are “pure” 
in the sense that every feature vector assigned to a 

category comes from the same target or background location. Different views of the 
an object part generate different categories; for example, there are two view 
categories for wheels: one for nearly parallel projections, and another for wheels at  
more oblique angles (although the latter was not one of eight shown in Figure 3). 

Not all of the view categories in Figure 3 are equally meaningful. The first 
category, in fact, corresponds to the end of the shelf in the background behind the 
target. This was the most common category, because it never changed viewpoint and 
was visible in almost all the images. We need the semantic reasoning capabilities of 
the dorsolateral prefrontal cortex to infer that this category is uninteresting, and top-
down control to suppress it from being attended to in the future.  

Although view categories correspond to particular points and viewpoints, not all 
images in which a specific view is visible get included in a category. For example, 
there are more side-views of wheels than were found and assigned to the 7th category 
in Figure 3. Often this occurs because the wheel was not attended to; sometimes it 
was assigned to its own singleton view category. We believe that top-down reasoning 
will improve the detection rate for most view categories. For example, contexts that 
imply wheels will generate top-down predictions that increase the frequency with 
which that view category is found. 
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Conclusion and Future Work 

We presented a biomimetic 
architecture that copies the 
high-level design of human 
object recognition, and 
demonstrated a system built 
in that architecture. We 
make no claims of 
optimality for any 
component; indeed, we 
believe they all can be 
improved. Even with the 
current implementation, 
however, we were able to 
apply the system to a 
sequence of 580 images, and 
learn meaningful view 
categories without training 
data. (The same system has 
been applied to 2,000 table-
top images from a Lego 
robot and 3,500 images 

from a floor-level ER1 robot.) Our evaluation is qualitative rather than quantitative 
because (1) by definition we do not have ground truth labels for view categories, and 
(2) we know of no other system that categorizes attention window into view 
categories without supervision features to directly compare it to. 

Although we are encouraged by these early results, we would not field the current 
system as an application in its current form. First we need to close the predictive loop, 
by implementing biomimetic models of strategic and reflexive top-down processing. 
We are also interested in adding modules for the dorsal visual stream. Tracking, in 
particular, provides a significant unsupervised relation between view categories; if a 
tracked attention window shifts from view category ‘A’ to category ‘B’, then those 
two categories correspond to different views or illuminations of the same object.  
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