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Abstract
In this work, we address the trial-and-error nature
of modern reinforcement learning (RL) methods by
investigating approaches inspired by human cogni-
tion. By enhancing state representations and ad-
vancing causal reasoning and planning, we aim to
improve RL performance, robustness, and explain-
ability. Through diverse examples, we showcase the
potential of these approaches to improve RL agents.
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1. Introduction

In reinforcement learning (RL), an agent learns to act
in an environment to achieve some goal. RL problems
are framed as Markov decision processes (MDPs), de-
fined by states (S), actions (A), transition probabil-
ities (P), and rewards (R).

RL algorithms solve RL tasks by learning a map-
ping S 7→ A, i.e. finding suitable actions for states, to
maximize accumulated rewards. They can be model-
free (e.g. [1–4]) or model-based (e.g. [5, 6]). In model-
free algorithms, the agent balances exploration and
exploitation while trying actions to learn a value func-
tion for state-action pairs, which is then used to sam-
ple actions. Model-based RL learns an internal model
of the environment, which is used by the agent as a
simulator for planning. Such environment models are
usually forward models, i.e. they provide agents with
the basic reasoning capacity of rolling out hypotheti-
cal actions. Model-based RL has the advantage that
agents require less actual real-world experience and
the disadvantage that they require a reliable model
of the environment.

Both kinds of methods rely on trial and error by
the agent. Agents use black-box neural networks
to map raw inputs, e.g. images, to state-action val-
ues without any sophisticated understanding of state
information. Networks are trained directly on the
RL task of optimising return, without incentives to
learn representations that could help reasoning about
the environment and its dynamics. Furthermore, the
state-action pairs are considered independent and not
treated as part of targeted action sequences.

Humans, on the other hand, process abstract rep-
resentations of information, can contextualize infor-
mation and reason causally about steps required to
reach a goal. In this work, we aim to bridge this gap
by showing how cognition-inspired methods can im-
prove performance, sometimes even make tasks pos-
sible in the first place, and benefit robustness and
explainability.

2. State Representations

We showcase the benefits of appropriate represen-
tations with two examples. First, we demonstrate
the use of representing location and heading in visual
navigation as in Lange et al. [7]. In particular, we use
three representation learning methods with a PPO
agent [2]: (i) Slow feature analysis (SFA) [8], which
is able to extract location and heading from visual
input, (ii) principle component analysis (PCA), able
to extract heading but not location and (iii) convolu-
tional neural networks (CNNs), the go-to approach in
this context, trained on the RL task jointly with the
agent. CNNs do not encode either location or head-
ing. Figure 1 shows how SFA outperforms the other
representations. For more details, see Lange et al. [7].
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Figure 1: Performance of SFA, PCA and two CNN
representations on a star maze task with fixed (left) or
random (right) goal position. The images on the right
show the agent’s observation (top) and top view of
the maze (bottom; triangle: agent, cube: goal). Image
modified from [7].

Figure 2: Performance of the TD3 algorithm with
fsp, fsdp and rwp representations (see Section 2) on
various environments. Image modified from [9].

Figure 2 goes beyond visual navigation. It com-
pares different auxiliary tasks (additional tasks other
than reward maximization) for representation learn-
ing, in various non-visual environments. According
to our findings in Lange et al. [9], which are summa-
rized in Figure 2, forward state (difference) predic-
tion (fsp/fsdp) outperforms reward prediction (rwp)
and baseline RL representation learning without any
auxiliary task. This suggests that there is a benefit in
learning representations that are generally optimized
for modeling the dynamics of the environment.

Figure 3: Time evolution of different numbers of in-
teracting objects, all generated with the same trained
denoising diffusion model. This environment, Phyre,
is from Bakhtin et al. [15].

3. Reasoning and Planning

Models of the environment can be statistical or causal
[10]. The former is easier to learn, but the lat-
ter is more robust and generalizes better to out-of-
distribution situations [11]. Both benefit from rep-
resentations with high-level, causal variables. Such
representation learning methods already exist and
are used, for instance, in physical reasoning [12].
However, only recent gradient-based causal discov-
ery methods are efficient and scalable enough for RL.
Unfortunately, in ongoing work, we (and others [13])
found that some current approaches might fail due to
various natural effects in data distributions. Still, we
consider the field of gradient-based causal discovery
a promising direction for causal reasoning in RL.

Beyond causality, a smart planning algorithm
should be able to plan both forward from a state
and backward from a goal to incorporate both con-
straints. This is necessary to eliminate the need for
trial and error. Recently, Janner et al. [14] have made
an exciting step in this direction with denoising dif-
fusion models for invertible planning. We extended
their work with a model that can handle variable time
horizons and numbers of objects during inference, as
well as object interactions (see Figure 3). After rein-
troducing start and goal conditioning from [14], this
model will be useful not only for planning: An agent
can also use it to reason about past and future, to ex-
plore hypothetical options or to learn from mistakes.

4. Conclusion

We illustrated through different examples how in-
formative representations, as well as causal and in-
vertible reasoning have the potential to improve RL
agents that often rely on trial and error. Through
their alignment with human reasoning, our methods
can also provide robustness and explainability.
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