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Abstract
Legged locomotion enables animals to navigate chal-
lenging terrains. However, it demands intricate co-
ordination between the legs, with varying levels of
information exchange depending on the task. For
instance, in more demanding scenarios such as an
insect climbing on a twig, greater coordination be-
tween the legs is necessary to achieve adaptive be-
havior. To address this challenge for legged robots,
we present a concept and preliminary results of a de-
centralized biologically inspired controller for a hexa-
pod robot: Based on insights of coordination in-
fluences between legs in stick insects, our approach
models inter-leg information flow as message passing
through a Graph Neural Network.
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1. Introduction

Insects can traverse difficult terrain with ease while
coordinating their six legs in an efficient way. This
coordination manifests as a continuum of gaits that
allows insects to move efficiently at different veloci-
ties. Stick insects that walk slowly exhibit the tetra-
pod gait which transitions smoothly into the tripod
gait with increasing walking speed. Two main princi-
ples have been discovered in insect locomotion. First,
insect locomotion can be modeled by a set of local
rules or influences between legs [1, 2] visualized in
Figure 1(a). Here, local means that influences exist
only between immediately neighboring legs. Second,
the same rules hold for each leg. Both of those princi-
ples indicate a decentralized system, where the same
controller actuates every leg. This motivates an ex-
tension to the existing work [3, 4] that implements
such a decentralized controller for a quadruped and

a hexapod robot based on a reinforcement learning
(RL) multi-agent framework. This work assigns sep-
arate neural networks to the four legs and concludes
that information exchange between legs is required to
facilitate functioning coordination. Here we want to
go a step further by 1) using the exact same neural
network to control every leg, which aligns with the
second principle 2) utilize a graph neural network to
implement inter-leg coordination and 3) discuss how
to design a model that is transparent w.r.t. learned
coordination rules.

2. Methods

We now outline a simple bioinspired model which can
learn the tripod gait as found in many insects and
later discuss avenues to improve on interpretability
and to learn more diverse behaviors.

The controller is implemented as a graph neural
network (GNN) [5–7]. Together with an appropri-
ate graph structure it represents a local model where
leg control only depends on the leg’s own features,
as well as features of neighboring legs, i.e. the first-
order neighborhood. As shown in Figure 1(b), we
construct a graph G = (V,E), where the nodes V
correspond to the legs and the edges E correspond to
communication channels between edges (colored ar-
rows). This graph reflects the structure of the inter-
leg rules found in biological experiments on the stick
insect. Both nodes and edges are parameterized by
feature vectors. The node features xv ∈ R24 con-
sist of state information of the respective leg, as well
as state information of the torso. The edge features
eu,v ∈ R2 depend on the edge direction, specifically:
rostrally directed edge (blue) [1, 0], caudally directed
edge (orange) [−1, 0], contralateral edge (turquoise)
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(a) (b)

Figure 1: (a) Coordination rules that have been
found in stick insects, acting in the direc-
tions of the arrows. Figure adapted from
[3]. (b) Our decentralized controller in-
spired by the coordination rules on the left.
Yellow boxes represent nodes of the graph
and leg policy (π). Arrows show graph
structure utilized by the policies. Arrow
colors denote different edge features. The
robot body model shown as shaded schema
in the background.

[0, 1] and contralateral edge (green) [0,−1]. Note
that neither node, nor edge features contain identi-
fiers that uniquely identify them, thus the learned
model has to learn general state and message rep-
resentations for successful coordination. To ensure
that control of each leg only depends on first-degree
neighboring legs, the model is a single-layer GNN im-
plemented as

msgtu→v = φ
(
(xt

v − xt
u) ‖ eu,v

)
(1)

atv = θ

(
xt
v ‖

∑
u∈Nv

msgtu→v

)
, (2)

where φ and θ are trainable multilayer perceptrons
(MLPs), · ‖ · denotes vector concatenation and atv ∈
R3 denote the actions of leg v at time t. The policy is
trained via proximal policy optimization (PPO) [8] in
the actor-critic (A2C) flavor, where the ciritc uses the
same architecture as the actor, therefore it is also lo-
cal. The setting is posed as multi-agent reinforcement
learning, with every leg implemented as an individual
agent.

3. Results & Discussion

Figure 2 shows a preliminary result of our trained
policy. The observed behavior resembles a tripod
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Figure 2: Hip angles (blue curves) of each leg over
time shown for 5 seconds (100 simula-
tion steps). Shaded background indicates
that leg is in stance (dark) or swing mode
(light). Bottom shows the number of legs
in stance mode. The shown pattern corre-
sponds to a tripod gait.

gait, where the front-left (FL), middle-right (MR),
and hind-left (HL) legs move together while the other
legs move in the opposite phase. From our pre-
liminary experiments with different target velocities
(vtarget ∈ [0.1, 0.8]) we can report that the policy con-
verges consistently to this tripod behavior.

While this simple decentralized architecture repli-
cates biological observations it remains unclear to
what extend the rules found in the insect are being
implemented. We hypothesize that the messages be-
ing sent by the GNN contain much more information
than necessary to realize the simple rules discussed
above, which might have an adverse effect on learn-
ing more diverse walking gaits. Furthermore, rules
are only active at very distinct situations, e.g. when
the sending leg is currently in swing mode (c.f. rule
1 in [1]). Such mechanics are not explicitly built into
our model. Adding an attention mechanism as in
graph attention networks [9] to limit information ex-
change could yield a more interpretable model w.r.t.
rule learning and also foster learning.

4. Conclusion

We introduced the idea to learn leg coordination be-
havior exhibited by insects using graph neural net-
works. The preliminary results show the possibil-
ity to learn a stable tripod gait. In future work,
we will investigate 1) how we can make the model
more transparent with regards to the coordination
rules and 2) how to promote more disverse walking
behaviours with such a method.
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