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Advancements in Neural Network Generations
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1. Introduction

Innovations in Neural Network Generation demon-
strate the continual evolution, optimization, and de-
velopment of artificial neural networks (ANNs) over
periods [1]. These improvements include a combi-
nation of methodologies, approaches, and technical
breakthroughs aimed at increasing the efficiency and
abilities of neural network models [1]. Researchers
and engineers have repeatedly attempted to push the
boundaries of neural network performance, scalabil-
ity, and applicability across multiple fields. These
improvements usually involve changes to network de-
signs, training algorithms, optimization methodolo-
gies, and hardware acceleration methods. Moreover,
the neural network generations are closely related
to key achievements in the machine learning (ML)
research domain, such as the development of deep
learning (DL) designs like convolutional neural net-
work (CNN) or spiking neural network (SNN) and
using both neural generations to introduce natural
language processing and advances in computer vision
applications [2–4]. Thus, in the field of neural net-
work study, researchers have categorized ANN mod-
els into generations based on their computational de-
sign and capabilities. Maass’ classification approach
[5] categorizes ANN evolution into three generations.
Therefore, this research study explores the continual
evolution and optimization of ANNs, highlighting ad-
vancements in methodologies and technical innova-
tion. We discuss the different generations of ANN,
based on computational design and capabilities, em-
phasizing their role in shaping achievements in ML
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research. The study underscores the significance of
these generational milestones in enhancing the adapt-
ability and efficacy of neural network models for com-
putational tasks, such as image classification. Figure
1 demonstrates the visual representation of these gen-
erations.

2. First Generation of Neural Network

ML began with the perception neural network, a fun-
damental component of neural theory. Designed by
Frank Rosenblatt in the late 1950s [6], the perceptron
represented a unique technique for pattern recogni-
tion and classification. It symbolizes the first at-
tempts to recreate the functioning of real neurons
called a representation of biological neurons and cre-
ate a human-like intelligence machine. The architec-
ture was the first attempt to model biological brain
network computers and it utilized simple threshold
units. At its most basic explanation, the Perceptron
is a single-layer neural network designed for binary
classification tasks. Its primary element emphasizes
its significance as an introduction to more compli-
cated neural network topologies [7, 8]. Although rel-
atively straightforward, first-generation neural net-
works encountered significant computing and concep-
tual challenges. The computational capability at the
time was not sufficient for training large-scale net-
works or managing complicated learning algorithms.
Therefore, the perceptron’s linear decision limitations
significantly restrict its ability to address nonlinear
issues. Despite its limited extent and functionality,
but it was an important step in the development of
ANN [9].

© Sanaullah, S. Koravuna, U. Rückert & T. Jungeblut. Licensed under CC BY 4.0.



Advancements in Neural Network Generations

Figure 1: The basic overview of three generations of ANNs.

3. Second Generation of Neural
Network

Second-generation neural networks consist of multi-
layer perceptrons (MLP), a class of neural networks
containing one or more hidden layers [10, 11]. Unlike
single-layer or perceptions neural networks, which
can only be learned from linearly defined hyper-
parameters, MLPs can learn nonlinear mappings
from the input and output data by incorporating one
or more hidden layers with nonlinear activation func-
tions. This enabled MLPs to reach complex functions
and solve a wide range of ML challenges [12, 13].
However, compared to MLP, the most significant
achievement in the second generation of ANNs was
the development of CNN. CNN appeared as a marked
improvement in the neural network history. In the
mid-1980s, Kunihiko et al. [14] designed architec-
tures for processing structured grid-like data, such as
image-based datasets. They used the ideas of local
connectivity and hyper-parameter sharing to effec-
tively process hierarchical representations of graphi-
cal data. Additionally, Rumelhart and Williams et
al. [15] presented new learning methods, including
backpropagation, which transformed computer vision
and showed a breakthrough in image recognition and
object detection research domain.

4. Third Generation of Neural
Network

SNNs are a class of ANN that draws inspiration from
the human nervous system, such as the spiking mech-
anism of neurons in the brain [16, 17]. SNNs neural
architecture-based sharing information using discrete
spikes rather than continuous-valued signals, as com-

pared to other generations of ANNs process. This
spiking neuron function is the fundamental unit of
an SNN, stimulating the activity of biological neu-
rons by producing discrete spikes in response to in-
put current. These spikes are frequently described
as binary events that emerge at predetermined times
and reflect both the timing and stability of neu-
ral activity. As a result, the temporal dynamics
of the spiking process and propagation are impor-
tant for information simulation in SNNs for allowing
them to encode and interpret temporal patterns in in-
put [18, 19]. Furthermore, SNNs have demonstrated
promising performance in different applications, in-
cluding event-driven processing, pattern recognition,
and neuromorphic computing [20–22]. They are es-
pecially well-suited to applications that require pro-
cessing spatiotemporal data, such as sensory pro-
cessing, robotics, and object identification prediction
[23, 24]. Unlike traditional neural network architec-
tures that depend on the rate-based firing of neurons,
SNN more closely mimics the behavior of biological
neuron manners by communicating between neurons
via discrete functions, commonly known as action po-
tentials [25, 26]. Lastly, in terms of parallel process-
ing and implementation on hardware or edge devices,
SNNs perform incredibly well, due to their discrete
spike trains. Therefore, this feature enables energy-
efficient implementations on edge computing and is a
particularly useful tool for low-power applications.
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