
Proceedings of the DataNinja sAIOnARA 2024 Conference 32-35 DOI: 10.11576/dataninja-1164

Leveraging Desirable and Undesirable Event Logs in Process
Mining Tasks

Ali Norouzifar ali.norouzifar@pads.rwth-aachen.de
RWTH Aachen University, Germany

Wil van der Aalst wvdaalst@pads.rwth-aachen.de

RWTH Aachen University, Germany

Abstract
Traditional process mining techniques utilize one
event log as input to offer organizational insights.
In many applications, information regarding unde-
sirable process aspects may exist. However, the lit-
erature lacks a comprehensive overview of their inte-
gration into process mining tasks. In our paper, we
explore leveraging data from both desirable and un-
desirable event logs to augment existing process min-
ing tasks and develop innovative applications. Our
aim is to systematically outline the potential for en-
hancements in this realm.
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1. Introduction

Data extracted from information systems constitutes
a rich and valuable resource, providing possibilities
for diverse analyses. Process mining, as a broad dis-
cipline, encompasses a variety of applications applied
to event data to extract meaningful insights [1]. In
our research, we delved into leveraging information
related to desirable and undesirable event logs to
extract valuable insights and assist organizations in
improving their processes by addressing performance
and compliance problems. In Fig. 1, an overview of
the research questions targeting desirable and unde-
sirable cases is illustrated.

2. Potential Research Questions

Identification of Desirable and Undesirable
Event Logs (RQ1) Some potential approaches to
derive the desirability of the cases include domain-
specific labeling [2], assessing the adherence to the
normative behavior [3], rule-checking techniques [3],
identification of outliers or strange cases [4], and
automated detection of control flow variability [5].
Given that automatic labeling of cases as desirable
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Figure 1: Overview of the research questions lever-
aging the desirable and undesirable event
logs.

or undesirable relies on interpretations and specific
scenarios, user input may be necessary to choose an
appropriate method. In [5], a framework for the
identification of control flow variations across contin-
uous dimensions like duration of cases is proposed.
This framework takes an event log and a continuous
dimension. Considering the cases are sorted based
on their assigned value, a sliding-window-based algo-
rithm utilizing the earth mover’s distance is employed
to find the change points in the control flow. Further
analysis of the identified segments helps to categorize
the cases into desirable or undesirable.

Predictive Process Monitoring (RQ2) As-
suming that the desirability of the cases is known,
the event logs can be encoded as suitable features
for the machine learning techniques and the state-of-
the-art architectures can be used to obtain predictive
models or recommendations [6]. The process mining
field can contribute to the improvements by provid-
ing meaningful features [7]. Extracting explainability
from such predictive models helps to establish trust-
worthy predictions [8]. In addition to predictive mod-
els, many process variant analysis techniques from
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Figure 2: Process variant identification framework
across continuous dimensions [5]

the literature could be used to effectively compare
the event logs [9].

Process Model Evaluation (RQ3) Assessing a
process model’s capability to differentiate between
desirable and undesirable behavior is challenging.
Fitness is an evaluation metric used to assess the re-
playability of the observed behavior on the discovered
model [3]. In [10], evaluation metrics are suggested,
utilizing fitness criteria to ascertain model fit with
the desirable event log while not aligning with the
undesirable event log. Another approach proposed in
[11] checks if the generalization of behavior allowed
by the model conflicts with the undesirable behav-
ior generated artificially from the desirable event log.
Adaptations are required to make them applicable in
scenarios with desirable and undesirable event logs.

Process Discovery (RQ4) The goal is to dis-
cover process models that support a desirable event
log while avoiding an undesirable event log. Limited
research has been conducted to involve desirable and
undesirable event logs in process discovery. Declar-
ative process discovery approaches like [2] and [12]
discover constraint-based models from desirable and
undesirable event logs. In [13] and [14], the discovery
of procedural process models using these event logs is
investigated. The IMbi algorithm is another relevant
discovery technique introduced in [10]. In each recur-
sion, the algorithm finds a process structure that has
a low cost based on the desirable event log and a high
cost based on the undesirable event log. In Fig. 3, one
recursion of the proposed algorithm is illustrated [10].
The ratio parameter controls the involvement of the
undesirable event log in the process discovery.

Imposing Rules to Process Discovery (RQ5)
User-defined rules or discovered rules from event logs
can help to enhance the quality of the discovered pro-
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Figure 3: One recursion of IMbi framework [10], dis-
covering a process model to support the de-
sirable event log while avoiding the unde-
sirable event log.
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Figure 4: One recursion of IMr framework [15], al-
lowing for a set of rules R as input.

cess models. Existing process discovery frameworks
often disregard other valuable sources such as do-
main knowledge and documentation within business
processes that provide insights into how the process
functions. In [15], the IMr algorithm is proposed as a
generalization of the IMbi framework that is capable
of considering some declarative rules as input. One
recursion of the IMr framework is illustrated in Fig. 4.
This approach can be extended to scenarios with two
event logs as input. In addition, a set of rules that
can discriminate between the desirable and undesir-
able event logs can help to discover better process
models.

Process Model Visualization (RQ6) The ob-
tained insights from the previous research questions
could be accompanied by visualization techniques.
Conformance checking techniques from the literature
or user feedback can be used to further improve the
process models and align them better with reality.

3. Conclusion

Six potential research questions regarding the utiliza-
tion of desirable and undesirable event logs in the
process mining field are introduced in this extended
abstract. Extending existing process mining frame-
works with the integration of this information could
yield enhanced insights.
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